Mini Review

Cancellation of NKT cell immunosuppression targeting myeloid suppressor cells

Haruka Wada¹, Kazuhiko Yanagisawa², and Ken-ichiro Seino^{1,*}

¹⁾Division of Bioregulation Research, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan

²⁾Department of Surgery, School of Medicine, University of Tsukuba, Ibaraki, Japan

CD1d-restricted natural killer T (NKT) cells are one of immunoregulatory cells. NKT cells can be specifically activated by a synthetic glycolipid, α -galactosylceramide (α -GalCer). Using some glycolipids such as α -GalCer, it is expected to develop a new NKT cell-mediated therapeutic strategy against cancer. However, it is known that, in human cancer patients, NKT cells express a degree of hyporesponsiveness to α -GalCer. For example, we have reported that, in gastrointestinal cancer patients, NKT cell proliferation and cytokine production were impaired. We have further examined the mechanism by which hyporesponsiveness to α -GalCer can be induced using cancer-bearing mice. In the animal study, α-GalCer-induced NKT cell expansion, cytokine production, cytotoxicity, and anti-metastatic effect in vivo were all significantly impaired. In fact, α -GalCer could eliminate metastatic disease in naïve animals, but failed to protect cancer-bearing mice. We found that CD11b+ Gr-1+ cells were particularly increased in cancer-bearing mice and were necessary and sufficient for the suppression of NKT cells to α-GalCer. We also found that the increased CD11b⁺ Gr-1⁺ cells suppressed NKT cell function in a nitric oxide-mediated fashion. To reduce the population of CD11b⁺ Gr-1⁺ cells, we administered a retinoic acid to cancer-bearing mice. This treatment significantly reduced the population of CD11b+ Gr-1⁺ cells and effectively restored α -GalCer-induced NKT cell responses. These results demonstrate a novel feature of NKT cell function in cancer, and suggest a new strategy to enhance NKT cell-mediated anti-cancer immune responses by suppressing CD11b⁺ Gr-1⁺ cell functions.

Rec.9/30/2008, Acc.10/23/2008, pp128-130

* Correspondence should be addressed to:

Ken-ichiro Seino, M.D., Ph.D., Division of Bioregulation Research, Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan. Phone: 81-44-977-8165, Fax: 81-44-977-8165, email: seino@marianna-u.ac.jp.

Conflict of interest statement: No conflict declared.

Key words NKT, α -galactosylceramide, nitric oxide, myeloid suppressor cell, ATRA

NKT cell and α -galactosylceramide

CD1d-restricted natural killer T (NKT) cells are a lymphoid lineage characterized by expression of unique invariant T cell

receptor encoded by V α 14-J α 281 gene segments in mice and V α 24-J α 18 in humans¹). NKT cells recognize α -galactosylceramide (α -GalCer) and its analogues; glycolipids that can

be presented by CD1d²⁾. It has been shown that α -GalCer selectively stimulates NKT cells to produce large amount of both T helper 1 (Th1) and Th2 cytokines, and that α -GalCer-activated NKT cells exhibit cytolytic activity and exert anti-tumor effects²⁾. Therefore, manipulation of immune system with α -GalCer has a potential to become an effective tool in cancer immunotherapy. In fact, several clinical trials against cancer using α -GalCer have already been reported³⁾. Considering its clinical applications, it seems important to examine the α -GalCer-induced immune responses in cancer-bearing hosts. Using clinical samples obtained from cancer patients, we have reported that responses of V α 24 NKT cells against α -GalCer to proliferate or produce cytokines were impaired^{4,5)}. These observations prompted us to investigate α -GalCer-induced immune responses in cancer-bearing mice and examine corresponding mechanisms.

Hyporesponsiveness of NKT cell in cancer

Using mouse cancer model, we first examined α -GalCerinduced cell proliferation and cytokine production⁶⁾. Mouse splenocytes from either naïve or cancer-bearing mice were stimulated with α -GalCer. In the culture of splenocytes from naïve mice, NK1.1⁺ TCR β^+ population expanded well by day 7. In contrast, this expansion of NK1.1⁺ TCR β^+ cells in B16- or 3LL Lewis lung cancer-bearing mice was significantly lowered. Thus, the α -GalCer-induced cell expansion of NK1.1⁺ TCR β^+ population is impaired in cancer-bearing mice. Upon α -GalCer injection, the levels of both IFN- γ and IL-4 in the sera of B16-bearing mice were significantly lower than those in naïve mice. When spleoncytes from cancer-bearing mice were stimulated with α -GalCer *in vitro*, reduced level of both IFN- γ and IL-4 production in the supernatants was observed compared with those from naïve mice.

We also examined whether α -GalCer-induced cytotoxic activity in the spleens differs between naïve and cancer-bearing mice⁶). Spleen cells obtained from naïve mice which had been injected with α -GalCer showed significant cytotoxicity against both YAC-1 and B16 cells. However, when B16-bearing mice were injected with α -GalCer, the cytotoxicity induced in the spleens was significantly reduced to both targets. These results indicate that α -GalCerinduced cytotoxicity in the spleen is impaired in the cancer-bearing state. We further evaluated the anti-metastatic effect of α -GalCer in cancer-bearing status. In naïve mice which had been i.v. injected with 3LL cells, treatment with α -GalCer effectively inhibited the formation of lung metastasis. In contrast, in cancer (3LL)-bearing mice, α -GalCer did not efficiently prevent the lung metastasis, indicating that anti-metastatic effect of α -GalCer is impaired in cancer-bearing status.

Mechanism of the hyporesponsiveness

What is the mechanism for the suppression of NKT cells in cancer-bearing state? We focused on the role of CD11b⁺ Gr-1⁺ cells in the hyporesponsiveness to α -GalCer in cancer-bearing mice, because the proportion and absolute number of CD11b⁺ Gr-1⁺ cells were increased in cancer-bearing mice⁶. CD11b⁺ cells and Gr-1+ cells were separately isolated from naïve and cancerbearing mice, then added to freshly isolated naïve splenocytes cultured with α -GalCer. We found in this coculture experiments that cytokine production by NKT cells was significantly impaired by the addition of CD11b⁺ Gr-1⁺ cells derived from cancer-bearing mice. We further tested a possible role of nitric oxide (NO) in the α -GalCer hyporesponsiveness. We pretreated the CD11b⁺ Gr-1⁺ cells with iNOS inhibitor (L-NMMA) and added them to the coculture. This pretreatment canceled the suppression, thus we concluded that CD11b⁺ Gr-1⁺ cells from cancer-bearing mice induce the hyporesponsiveness to α -GalCer in a NO-mediated fashion.

We finally injected all-trans retinoic acid (ATRA) to the cancer-bearing to induce differentiation of the CD11b⁺ Gr-1⁺ cells⁶). In fact, the number of CD11b⁺ Gr-1⁺ cells in spleens of cancerbearing mice was significantly reduced by the ATRA treatment. Accordingly, this treatment restored the α -GalCer-induced cytokine production from cancer-bearing mice, indicating that the ATRA treatment could reverse defective NKT cell response to α -GalCer in cancer-bearing mice.

Discussion

In our previous human study, T cell-depleted fraction in peripheral blood mononuclear cells (containing myeloid cell fraction) was responsible for the hyporesponsiveness of V α 24 NKT cells of cancer patients⁴⁾. This is consistent with the fact in the animal study which indicated that CD11b⁺ Gr-1⁺ myeloid cells were responsible for the NKT cell suppression in cancer. Since CD11b⁺ Gr-1⁺ cells are a heterogeneous population of myeloid cells that comprises immature macrophages, granulocytes and dendritic cells (DCs), these cells have been called "immature myeloid suppressor cells"⁷⁾. The myeloid suppressor cells are known, in fact, to be able to suppress diverse kind of immune cells, including T cells⁸⁾. It has been also known that the myeloid suppressor cells can produce NO which induces celltype-independent suppression. Therefore, the NO-mediated NKT cell suppression may be one of immunosuppressive events ob-

Fig.1 CD11b⁺ Gr-1⁺ cell-derived NO suppresses NKT cell function in cancer-bearing state This could be canceled by the reduction of CD11b⁺ Gr-1⁺ population or blocking of NO.

served in cancer patients. It is possible that the myeloid suppressor cells can suppress NKT cells bearing non-V α 14J α 281T cell receptor.

CD11b⁺ Gr-1⁺ cells were also examined in another model of cancer-mediated immune dysfunction. Terabe et al. have reported that CD11b⁺ Gr-1⁺ cells, which are stimulated by IL-13 produced by non-V α 14J α 281 CD1d-reactive T cells, induce suppression of tumor immunosurveillance of 15-12RM tumor through their TGF- β production⁹. However, in our model, blocking of TGF- β did not restore the cytokine production by NKT cells⁶, suggesting a little contribution of TGF- β in this hyporesponsiveness. Instead, we have identified the NO-mediated suppression mechanism, which was restored by the differentiation of CD11b⁺ Gr-1⁺ cells with ATRA (Fig.1).

When considering a cancer immunotherapy using α -GalCer, we should be careful in the suppression of NKT cell function. To overcome this, it could be beneficial to combine some therapies, including a differentiation-inducer which could reduce the size of the immature myeloid suppressor cell populations.

References

- Seino K, Taniguchi M: Functional Roles of NKT cells in the immune system. Frontiers in Bioscience, 9: 2577-2587, 2004.
- 2) Kawano T, Cui J, Koezuka Y, et al: CD1d-restricted and TCR-mediated activation of V α 14 NKT cells by glyco-sylceramides. Science, 278: 1626-29, 1997.
- Giaccone G, Punt CJ, Ando Y, et al: A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res, 8: 3702-3709, 2002.
- Yanagisawa K, Seino K, Nozue M, Todoroki T, Fukao K: Impaired proliferative response of Vα24 NKT cells from cancer patients against α-galactosylceramide. J Immunol, 168: 6494-6499, 2002.
- Tahir SM, Cheng O, Shaulov A, et al: Loss of IFN-γ production by invariant NKT cells in advanced cancer. J Immunol, 167: 4046-4050, 2001.
- Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K: Hyporesponsiveness to NKT cell ligand αgalactosylceramide in cancer-bearing state mediated by CD11b⁺ Gr-1⁺ cells producing nitric oxide. Cancer Research, 66: 11441-11446, 2006.
- Bronte V, Serafini P, Appoloni E, Zanovello P: Tumorinduced immune dysfunctions caused by myeloid suppressor cells. J Immunother, 24: 431-446, 2001.
- Almand B, Clark JI, Nikitina E, et al: Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. J Immunol, 166: 678-689, 2001.
- 9) Terabe M, Swann J, Ambrosino E, et al: A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med, 202: 1627-1633, 2005.