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Analysis of dendritic cells from common marmosets
for the treatment of CNS injury
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Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan

   Dendritic cells (DCs) play important roles as modulators of immune responses and are well known for their

ability to activate T cells. Recently, we demonstrated that implantation of DCs into the injured spinal cord

results in activation of endogenous neural stem/progenitor cells (NSPCs), promoting repair of the injured

central nervous system (CNS). DCs are strong inducers of the proliferation and survival of NSPCs as well as

producers of the neurotrophic factor, NT-3. To analyze the therapeutic efficacy of DC therapy for CNS injury

in a nonhuman primate, we established a method to isolate DCs from the common marmoset (CM), becuase

the CM offers many advantages for preclinical studies over other monkeys. Bone marrow (BM)-derived

CD11c+ cells from the CM showed the characteristic features of DCs, including the typical DC morphology

and the ability of the cells to undergo endocytosis, secrete IL-12, and stimulate xenogenic T cells. The BM of

the CM proved to be an excellent cell source for isolating DCs intended for preclinical studies of cell therapy,

for which large quantities of the cells are required. We are considering a preclinical study of cell therapy

using BM-derived CD11c+ DCs for the treatment of SCI in the CM, to evaluate the therapeutic effects and

safety of this procedure for clinical application.
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Introduction
　Dendritic cells (DCs) are key regulators of T-cell immunity,
as they possess a remarkable ability to take up, process and present
antigens, as compared with other antigen-presenting cells1,2).
Based on their strong ability to activate cytotoxic T lympho-
cytes, DCs are regarded as a useful tool for cancer immunotherapy
and are currently being used in human clinical studies3-6). Fur-
thermore, we demonstrated a new function of DCs relevant to
the treatment of central nervous system (CNS) diseases, such as

spinal cord injury (SCI), of activating endogenous neural stem/
progenitor cells (NSPCs)7).
　DCs have been most extensively characterized in humans and
rodents. Using primates instead of rodents to analyze the thera-
peutic effects of DC therapy is an important step towards future
clinical studies of the application DCs for the treatment of SCI.
Although DCs have been isolated from Rhesus and African green
monkeys8-12), details of the immune system, including the func-
tions of the DCs, in the common marmoset (CM) remain un-
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clear. Recently, we established a method to isolate DCs from the
CM and subsequently characterized these cells for preclinical
studies13). The CM offer many advantages for preclinical studies
over other monkeysts14,15). The average weight of an adult CM is
between 200g-300g, which makes it possible to handle and breed
them easily on a large scale while reducing the cost of the experi-
ments15). Sequence analysis of the entire CM genome is in progress
at the Washington University and NIH Intramural Sequencing
Center, and the results of these efforts will clarify the genetic
similarities between the CM and humans. Because of these ad-
vantages, the CM has been widely used in many studies involv-
ing gene therapy16,17), bacterial infections18), toxicology19) and
immunology20,21). The usefulness of a CM model for studies on
CNS diseases, including SCI, has also been shown22,23). This ar-
ticle provides an outline of DC therapy for the treatment of spi-
nal cord injury and presents the results of characterization of
DCs from the CM for application to preclinical studies.

DC therapy for the treatment of spinal
cord injury
　Neural stem cells have been shown to exist in the adult mam-
malian CNS24-31). However, the CNS self-repair activity is ex-
tremely poor, especially in the spinal cord27,31,32). Although in
some pathologic conditions such as ischemia, endogenous NSPCs
are likely to give rise to neurons and hence to functional recov-
ery in the adult mammalian brain33-37), this has not been shown in
the injured spinal cord26,38). The lack of de novo neurogenesis in
the injured adult spinal cord cannot be explained solely by the
intrinsic properties of the NSPCs, because they are able to dif-
ferentiate into neurons both in vitro and in vivo when transplanted
into neurogenic sites, such as the hippocampal dentate gyrus,
but not when transplanted into the adult spinal cord30). In the
event of injury of the adult spinal cord, the NSPCs proliferate
and differentiate exclusively into astrocytes rather than into
neurons26), suggesting that the microenvironment in the spinal
cord is highly inhibitory for neuronal differentiation and sup-
portive for astrogliosis39-42).
　Somewhat unexpectedly, however, activation of some im-
mune systems, including activation by implantation of activated
macrophages43) or induction of autoimmune T cells before or
after SCI44-46), has been demonstrated to promote functional re-
covery of the injured spinal cord47). These effects could be ex-
plained by the clearance of CNS myelin by the activated macro-
phages48) or blockade of myelin-associated neurite growth in-
hibitors49-52) by the anti-Nogo T cells53), which seem to induce
axonal regeneration. In addition, immune cells may also be ac-
tively involved in functional recovery, e.g., by activating endog-
enous NSPCs to engage in de novo neurogenesis. To examine

this possibility, we investigated the potential trophic effects of
immune cells on the proliferation of NSPCs in vitro using a neuro-
sphere-formation assay, in which the NSPCs were cocultured
with immune cells. Among the immune cells tested, DCs showed
the strongest activity of inducing the proliferation and survival
of NSPCs in vitro7). Moreover, we found that DCs implanted
into the injured adult mouse spinal cord activated the prolifera-
tion of endogenous NSPCs in vivo and induced de novo neuro-
genesis. DCs also produced neurotrophin (NT)-3 in vitro and in
vivo and activated endogenous microglia. Behavioral analysis
revealed that the locomotor functions of the DC-implanted mice
showed significant recovery as compared with those of the con-
trol mice. Our results suggest that DC implantation exerts trophic
effects, including activation of the endogenous NSPCs, promot-
ing repair of the injured adult spinal cord.

Isolation and characterization of DCs
from the bone marrow of common marmo-
sets
　Healthy CMs were selected from the experimental stock at the
Central Institute for Experimental Animals (Kawasaki, Japan).
All animal experiments were performed according to the guide-
lines of the Animal Care and Use Committee of the Keio Uni-
versity School of Medicine. The cross-reactivities of the follow-
ing anti-human monoclonal antibodies (mAbs) in CM were ana-
lyzed using flow cytometry, and to the present results agreed
with previous results16,54,55): CD1a (clone HI149, eBioscience,
San Diego, CA), CD1c (clone AD5-8E7, MiltenyiBiotec, Bergisch
Gladbach, Germany; clone 11.86, Becton Dickinson, San Jose,
CA), CD3 (clone SP34, BD Pharmingen, San Diego, CA), CD4
(clone MT310, DAKO Cytomation, Glostrup, Denmark), CD8
(clone T8, Beckman Coulter), CD11c (clone S-HCL-3, Becton
Dickinson), CD14 (clone TUK4, DAKO Cytomation; clone
M5E2, BD Pharmingen), CD34 (clone BIRMA-K3,  DAKO),
CD80 (clone MAB104, Beckman Coulter), CD83 (clone HB15a,
Beckman Coulter), CD86 (clone B-T7, Diaclone, Besançon
Cedex), and HLA-DR (clone G46-6, BD Pharmingen) (Table 1).
　Femurs and tibiae were removed and the bone marrow (BM)
cells were suspended in RPMI-1640 supplemented with 10%
heat-inactivated fetal calf serum (FCS). After overnight culture,
the cell suspensions were collected and plated in a complete
medium (cRPMI), namely, RPMI-1640 supplemented with 10%
FCS, recombinant human (rh) GM-CSF (100 ng/mL) and rhIL-4
(100 ng/mL), based on the method for generating mouse BM-
derived DCs56,57). The reactivity of human GM-CSF and IL-4
with the cells of the CM has been previously demonstrated58,59).
On culture days 7-8, the floating cells were collected as a DC-
enriched cell fraction. On day 7, 2-5% of the non-adherent cul-
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tured-BM cells (non-adherent BM) exhibited the CD11c+ HLA-
DR+ phenotype, indicating that more than 1X107 of the CD11c+

HLA-DR+ cells were isolated from the CM specimen. Confocal
imaging showed the co-localization of CD11c with the HLA-
DR on the surface of cells with numerous dendrites, a morpho-
logical characteristic of DCs (Fig.1)13). More CD11c+ HLA-DR+

cells were generated in the presence of rhGM-CSF and rhIL-4
than in the presence of rhGM-CSF alone. DCs were also gener-
ated from CD34+ BM progenitor cells, based on methods reported
previously8,12). Sorted-CD34+ BM cells were plated in RPMI-
1640 medium supplemented with 10% FCS, 1% non-essential
amino acids, 1 mM sodium pyruvate, 10mM Hepes, rhGM-CSF
(100 ng/ml), rhFlt3-L (100 ng/ml), rhSCF (100 ng/ml), and
rhTNF-α (5 ng/ml). On day 5, the cells were recultured in cRPMI
supplemented with rhTNF-α (5 ng/ml), and cultured further for
a week. The number of CD11c+ HLA-DR+ cells generated from
the CD34+ BM cells was less than one-eighth of that from non-
adherent BM cells.
　We analyzed the phenotype change of the CD11c+ cells gen-
erated from the non-adherent BM and CD34+ BM cells follow-
ing maturation. For maturation, the BM cell culture was stimu-
lated with 1 μg/mL Esherichia coli (E coli )(055:B5)-derived
lipopolysaccharide (LPS) for 24 hours. To enrich the CD11c+

cell population, the floating cultured cells were labeled with PE-
conjugated anti-human CD11c mAb and purified by cell sorting.
In both the methods, the LPS-stimulated CD11c+ cells showed
higher expression levels of CD80, CD83, CD86 and HLA-DR
than the non-stimulated CD11c+ cells, and the CD11c+ cells from
non-adherent BM cells and CD34+ BM cells showed similar ex-

pression patterns (Fig.1)13). Moreover, the CD11c+ HLA-DR+

cells from the non-adherent BM contained CD1a+ and CD1c+

cell populations, which are known as markers of human DCs60,61),
but no CD3+ population. Therefore, we used the DCs derived
from the non-adherent BM for further analysis.
　To examine the functional characteristics of the BM-derived
CM DCs, the cytokine production and ability to stimulate
xenogenic human T cells were analyzed. For the xenogeneic
mixed leukocyte reaction (MLR), human T cells were purified
from peripheral blood cells as responder cells. These responder
cells were seeded into a 96-well plate together with titrated num-
bers of irradiated DCs as stimulators, in RPMI-1640 supple-
mented with 10% human AB serum. After 5 days of co-culture,
the cells were pulsed with 10 mM 5-bromo-2' deoxyuridine
(BrdU) for 24 hours and examined by a BrdU incorporation as-
say. In the MLR experiments, the culture supernatants of the
CM-DCs stimulated with LPS (1 μg/mL) for 24 hours were ana-
lyzed for IL-12 (p70). These analyses showed that the LPS-stimu-
lated CD11c+ cells secreted IL-12 and caused proliferation of
xenogenic human T cells in a dose-dependent fashion, indicat-
ing their potency as APCs13). Furthermore, an ELISA revealed
that human T cells co-cultured with the LPS-stimulated CD11c+

cells secreted IFN-γ , but not IL-4, suggesting that BM-derived
CD11c+ cells from the CM could induce Th1-type immune re-
sponses similar to those induced by human DC1.
　The endocytotic activity of the DCs was also analyzed as de-
scribed previously57). BM-derived CD11c+ cells were incubated
with Dextran-FITC (1mg/mL) at either 4 ℃ or 37 ℃ for 30 min-
utes in cRPMI. After being washed with PBS, the cells were
analyzed using a FACS. For the immunocytochemical analysis,
PE-labeled CD11c+ cells were incubated with Dextran-FITC
(1mg/mL) at either 37 ℃ or 4℃ for 2 hours. The BM-derived
CD11c+ cells incubated at 37℃ incorporated more Dextran-FITC
than the cells incubated at 4℃, and the LPS-stimulated CD11c+

cells (mature type) showed a weaker ability for endocytosis than
the non-stimulated CD11c+ cells (immature type), consistent with
the functional features of DCs (Fig.2)13).
　We previously demonstrated that mouse splenic DCs secrete
the neurotrophic factor, NT-37). Lysates of BM-derived DCs were
assayed for NT-3 and BDNF. We found that the BM-derived
DCs from the CM also produced NT-3, whereas no apparent
production of BDNF was observed from these cells.
　Taken together, our results show that the characteristics of
the DCs obtained from the CM resemble those of the human
DCs, suggesting the usefulness of CM-DCs for preclinical stud-
ies on cell therapy. Moreover, we showed that BM-derived DCs
from the CM also produced NT-3, an important neurotrophic
factor for CNS regeneration. We are considering a preclinical

Antigens Clones Providers Isotypes

 CD1a HI149 eBioscience IgG1

 CD1c AD5-8E7 Miltenyibiotec IgG2a
11.86 Becton Dickinson IgG2a

 CD3 SP34 BD Pharmingen IgG3
 CD4 MT310 DAKO IgG1
 CD8 T8 Beckman Coulter IgG1
 CD11c S-HCL-3 Becton Dickinson IgG2b
 CD14 TUK4 DAKO IgG2a

M5E2 BD Pharmingen IgG2a
 CD34 BIRMA-K3 DAKO IgG1
 CD80 MAB104 Beckman Coulter IgG1
 CD83 HB15a Beckman Coulter IgG2b
 CD86 B-T7 Diaclone IgG1
 HLA-DR G46-6 BD Pharmingen IgG2a

Table Human monoclonal antibodies that cross-
react in common marmoset
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Fig.1 Characterization of BM-derived DCs from the
CM

(A) Analyses of CD80, CD83, CD86 and HLA-DR expressions
on the CD11c+ cells generated from non-adherent cultured BM
cells (Non-adherent BM) and CD34+ BM cells. For maturation,
the cultured BM cells were treated with LPS (1 μg/mL) for
another 24 hours. The numbers within the dot blots represent
the percentages within the quadrant. (B) Expressions of CD3,
CD1a, CD1c, and CD14 were observed in the BM-derived
CD11c+ HLA-DR+ cells (red line). Isotype controls are shown
by a blue line. (C) Imunocytochemical analysis of BM-derived
DCs. After stimulation with LPS for 24 hours, CD11c (red) and
HLA-DR (green) were expressed on the cell surface of the
dendrites. Scale bar: 10 μm. (D) Culture supernatants of BM-
derived DCs treated with LPS for 24 hours then analyzed for
IL-12 production using an ELISA. (from Ohta et al., Immunol-
ogy, 123: 566-574, 2008; reprinted with permission of Blackwell
Publishing Ltd.)

Fig.2 Immature BM-derived DCs exhibit endocy-
totic activity

(A) BM-derived CD11c+ cells that were stimulated with LPS (1
μg/mL) or left untreated were incubated with FITC-dextran
for 30 minutes at either 37℃ (Shaded blue histograms) or 4℃
(green line) as a control for the background passive uptake.
An isotype control is shown by the red line. (B) Immature BM-
derived DCs labeled with PE-conjugated anti-CD11c mAb were
incubated with Dextran-FITC at 37 or 4℃ for 2 hours.  Confo-
cal microscopic image showing fluorescent microspheres
(green) in the cytoplasm of the immature BM-derived CD11c+

cells (red) incubated at 37℃, but not in those  incubated at 4℃.
Scale bar: 10 μm. (from Ohta et al., Immunology, 123: 566-
574, 2008; reprinted with permission of Blackwell Publishing
Ltd.)

Fig.3 Autologous DC therapy for the treatment of
central nervous system injury

DCs are generated from patients with central nervous system
(CNS) injury and the autologous DCs are implanted into the site
of injury in the CNS.
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study on cell therapy using BM-derived CD11c+ DCs for the
treatment of SCI in the CM, to evaluate the therapeutic effects
and safety of this procedure for clinical application (Fig.3).

Protocol for preclinical study on DC ther-
apy for the treatment of SCI in CM
　CMs have naturally chimeric bone marrow and peripheral
blood because the placental circulation is shared between dizy-
gotic twins and immune tolerance exists between the twins62).
Therefore, we use dizygotic twins for donor-recipient pairs in
the DC transplantation studies. First, peripheral blood mono-
nuclear cells are harvested from dizygotic twins and a mixed
lymphocyte reaction (MLR) is performed to select adequate do-
nor-recipient pairs. MLR-negative pairs are then used for the
following cell therapy experiment. Contusive SCI at the C5 level
is induced in a CM recipient using a weight-drop device (a modi-
fied NYU impactor with a diameter of 3.5 mm), as described
previously22). On the same day as the SCI, BM cells are har-
vested from the CM donor and are cultured in the presence of
rhGM-CSF and rhIL-4 for 7 days. On day 7, CD11c+ HLA-DR+

DCs (1-5 x 106 cells) isolated from the cultured-BM cells are
injected into the center of the lesion site. After DC implantation,
motor function as well as histology and magnetic resonance im-
aging (MRI) of the injured spinal cord are analyzed to evaluate
the therapeutic effect and safety of DC therapy in a nonhuman
primate.
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