Mini Review

NF-κB activation pathway in thymic epithelial cells controls establishment of self-tolerance

Mitsuru Matsumoto
Division of Molecular Immunology, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan

Thymic epithelial cells (TEC) play pivotal roles in the establishment of self-tolerance through critical dialogue with developing thymocytes. Unique actions of NF-κB activation pathway within TECs for the establishment of self-tolerance have recently been highlighted by studies using a strain of mouse bearing a natural mutation of the NF-κB-inducing kinase (NIK) gene (aly mice) and gene-targeted mice of IκB kinase α (IKKα). NIK-mutant strain manifests autoimmunity and disorganized thymic structure with abnormal expression of Rel proteins in the stroma. The autoimmune disease seen in NIK-mutant mice was reproduced in athymic nude mice by grafting embryonic thymus from NIK-mutant mice. Similarly, an autoimmune-disease phenotype was induced in nude mice by grafting embryonic thymus from IKKα-deficient mice. The thymic microenvironment that caused autoimmunity in NIK- and IKKα-dependent manner was associated with defective processing of NF-κB2, resulting in the impaired development of thymic epithelial cells. Thus, a novel function for NIK-IKKα pathway in thymic organogenesis for the establishment of central tolerance has emerged.

Rec.12/14/2006, Acc.2/1/2007, pp165-170

Introduction

Physical contact between thymocytes and the thymic stroma is essential for T-cell maturation and shapes the T-cell repertoire in the periphery. Stromal elements that control these processes still remain elusive. Recently, much attention has been paid to the epithelial-cell component of the stroma (i.e., thymic epithelial cells; TECs), since increasing numbers of mutant and gene-targeted mice bearing structural and/or functional TEC defects have been reported, many of which are actually associated with autoimmune disease phenotypes. In this mini-review, I will focus on two transcriptional regulators within TECs, NF-κB-inducing kinase (NIK) and IκB kinase α (IKKα), which together play crucial roles in the establishment of self-tolerance by maintaining the developmental integrity of TECs, thereby preventing the development of autoimmune disease (Fig.1).

NIK and IKKα

NIK is structurally related to mitogen-activated protein kinase
kinase kinase (MAP3K) and has been shown to phosphorylate both IKKα and IKKβ, which sequentially activate the downstream IκB proteins necessary for NF-κB activation. The lymphoplasia (aly) strain of mouse carries a natural mutation of the NIK gene in which a G855R substitution in the C-terminus of the protein results in inability to bind to IKK α (Fig. 2). aly mice have provided a unique model for the abnormal development of lymphoid organs, since they lack all lymph nodes and Peyer’s patches, and development of spleen architectural features, such as germinal centers and follicular dendritic cell clusters, is disturbed. This is due to defective NF-κB activation through the lymphotoxin (LT)-β receptor (LTβR), which is essential for the development of secondary lymphoid organs. Thymic structure is also disorganized in aly mice; the medulla in aly mice is smaller than that in control mice, and the boundary of the cortex and medulla is unclear. Importantly, aly mice also serve as a model of autoimmune disease, but of unknown etiology; histopathological analysis of aly mice has revealed chronic inflammatory changes in several organs, including the liver, pancreas, lung, salivary gland and lacrimal gland. We reasoned that the autoimmune-disease phenotype seen in aly mice might be associated with the altered thymic microenvironment. This hypothesis was later proven to be correct, when thymic chimeras were generated (Fig. 3A). Aly mouse thymus-grafted nude mice showed marked lymphoid cell infiltration in the liver (Fig. 3D) and pancreas, accompanied by autoantibody production. Histological evaluation of the grafted thymus revealed that control thymus contained cells reactive with the lectin Ulex europaea agglutinin 1 (UEA-1) (Fig. 3C), whereas aly mouse embryonic thymus grafted into nude mice did not acquire UEA-1+ cells (Fig. 3E), suggesting that production of UEA-1+ medullary epithelial cells requires normal NIK in the thymic stromal element. Similar results were obtained using embryonic thymus obtained from IKKα-deficient mice, indicating an essential function of IKKα in thymic stroma-dependent self-tolerance that cannot be compensated for by the related IKKβ subunit.

Although the exact mechanism by which NIK (and IKKα as well) regulates the thymic microenvironment required for the establishment of central tolerance is unknown, the disorganized thymic structure together with reduced Aire expression in mice with a mutation disrupting the RelB gene merits attention. Because of the phenotypic similarities between aly mice and RelB-deficient mice (multi-inflammatory lesions together with absence of UEA-1+ medullary epithelial cells in the thymus), we speculate that NIK regulates the thymic microenvironment through activation of the NF-κB complex containing RelB. As
Fig. 3 Thymic stromal elements in NIK-mutant mice are responsible for the development of autoimmunity
(A) Embryonic thymus grafted (arrows) that had developed under the renal capsule of recipient nude mice. Nude mice grafted with NIK-mutant mouse embryonic thymus (B), but not with control mouse embryonic thymus (C), developed an autoimmune-disease phenotype in the liver. Thymic medullas from NIK-mutant mice contain no UEA-1+ cells (E) (stained in black in control mice; C).

production of NF-κB2 (p52) is impaired in both aly mouse thymic stroma and IKKα-deficient thymic stroma, and NIK has been shown to be necessary for the production of natural killer T cells through the action of RelB[16,17]; it is reasonable to speculate that the NIK-IKKα-related signaling pathway(s) activates the NF-κB complex in the thymic stroma consisting mainly of p52/RelB heterodimers to generate the thymic microenvironment (Fig. 2). Indeed, recent two studies have demonstrated that NF-κB2 controls thymic organogenesis, thereby maintaining central tolerance, although there is some difference in the mechanistic explanation between the two[18,19].

LTβR expressed on TECs
Although NIK-IKKα is an essential component downstream of LTβR[20], and aly mice show structural abnormality of the thymus[5,10,11], the finding that LTβR-deficient mice have a disorganized thymic structure was somewhat surprising[20], because none of the preceding reports on single-gene knockout mice, either for the membrane-bound LT component (i.e., LTα and LTβ) or LIGHT (two known ligands for LTβR[21]) (Fig. 4), referred to the thymic phenotypes in these mice[22,23]. In fact, deficiency of LTα alone was not accompanied by any obvious changes in thymic structure that would have resulted in reduced Aire expression at both the transcriptional[24] and protein levels (unpublished observation). LTβR-deficient mice show marked reduction of UEA-1+ cells caused by both loss of the characteristic three-dimensional organization and a reduction in the absolute number of epithelial cells[20]. In contrast, LTβ-deficient mice show no significant reduction in the total mass of medullary TECs (mTECs), although changes in the UEA-1+ cell distribution pattern have been pointed out. Introduction of LIGHT deficiency in LTβ-deficient mice resulted in no additional deterioration. Interestingly, LTβ/LIGHT double-deficient mice (lack of both membrane-bound LT and LIGHT) showed less severe thymic disorganization than LTβR-deficient mice, suggesting that LTβR might have additional ligand(s) other than membrane-bound LT and LIGHT[20,24]. Alternatively, in the light of the fact that LTβ-deficient mice show less profound phenotypes of lymph-node genesis (i.e., presence of mesenteric lymph nodes) compared with LTα-deficient mice[25,26], it is possible that LTα/LIGHT double-
deficient mice might show quite equivalent thymic phenotypes to those of LTβR-deficient mice.

LTβR-deficient mice show some signs of autoimmunity; their serum contains autoantibodies against several organs (i.e., stomach, pancreas and salivary gland)\(^29\). A role of LTβR in mTEC development seems to be a likely explanation for the autoimmune phenotypes of LTβR-deficient mice, similar to seen in both alvY mice and IKK-α-deficient mice (see below for further discussion).

LTβR signaling

NIK-IKK-α constitutes an essential component downstream of LTβR for secondary lymphoid organogenesis\(^30\). It is therefore reasonable to speculate that NIK-IKK-α also plays important roles in thymic organogenesis through the action of LTβR signaling. However, given that alvY mice show more profound reduction and disorganization of mTECs than LTβR-deficient mice\(^20\), it is possible that in this process NIK-IKK-α is additionally acting downstream of other receptor(s) beyond LTβR. One hint in the search for such receptor(s) involved in NIK-IKK-α-dependent thymic organogenesis is impaired processing of NF-κB2 in thymic stroma from alvY mice\(^11\) and IKK-α-deficient mice\(^13\). This alternative NF-κB activation pathway\(^27,28\) was originally demonstrated in hemopoietic cells from alvY mice\(^3\), and subsequently characterized for LTβR\(^29\) (Fig.2). Another signal that involves the generation of p52 from a precursor p100 might represent an additional NIK-IKK-α-dependent pathway that could fill the gaps of thymic phenotypes between alvY mice and LTβR-deficient mice.

NF-κB activation within TECs and autoimmunity

It is now clear that LTβR/NIK-IKK-α is not the only NF-κB-activating axis that regulates thymic organogenesis. TRAF6 (tumor necrosis factor receptor (TNFR)-associated factor 6) has also been demonstrated to be essential for organization of the thymic microenvironment\(^30\). TRAF6, an adaptor molecule that transduces signals from members of the TNF superfamily and Toll/IL-1 receptor family, activates NF-κB and activating protein 1 (AP1)\(^31\). Similarly to alvY mice and IKK-α-deficient mice, TRAF6-deficient thymus-grafted nude mice show marked lymphoid cell infiltration in multiple organs. In contrast to alvY mice and IKK-α-deficient mice, however, NF-κB2 processing in TECs from TRAF6-deficient mice is not impaired. Instead, RelB expression in TECs is severely reduced. TRAF6-dependent RelB expression has been confirmed by the recovery of RelB expression following the introduction of TRAF6 into TRAF6-deficient TECs. Thus, deficiency of NIK-IKK-α and TRAF6 merges at the point where p52/RelB complex formation is disturbed, although this does not mean that NIK-IKK-α and TRAF6 cooperate together within TECs in order for this heterodimeric complex to be formed. Rather, NIK-IKK-α and TRAF6 probably regulate NF-κB activation independently in this process, because TRAF6 deficiency does not affect NF-κB activation downstream of LTβR\(^30\).

The upstream receptor(s) responsible for TRAF6-dependent thymic organogenesis is currently unknown.

In addition to negative selection, self-tolerance is maintained by another mechanism involving immunoregulatory T cells (Treg)\(^32\), and Foxp3, a transcription factor that is genetically defective in an autoimmune disease known as IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome), is a key regulator for the development of Tregs\(^33-35\). alvY mice\(^11\) and TRAF6-deficient mice\(^30\), both of which show abnormal development of TECs, have reduced numbers of Tregs. Requirement of NIK/TRAF6 for the production of Tregs might provide a clue as to how the production of Tregs is controlled.

Table 1 Autoimmune pathogenesis in mice deficient for NIK and IKK-α in TECs

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>NIK-mutant mice</th>
<th>IKK-α-deficient mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymic structure assessed by immunohistochemistry</td>
<td>Defective development of mTECs</td>
<td>Defective development of mTECs in grafted thymus</td>
</tr>
<tr>
<td>Thymic self-antigen gene expression detected by RT-PCR</td>
<td>Dramatically reduced in total thymus, but not in individual TECs</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Production and function of Tregs</td>
<td>Reduced, but functionally competent</td>
<td>Not assessed</td>
</tr>
<tr>
<td>NF-κB2 processing in TECs</td>
<td>Defective</td>
<td>Defective</td>
</tr>
<tr>
<td>Possible mechanisms for the breakdown of central tolerance</td>
<td>Defective NF-κB activation required for the development of mTECs</td>
<td>Defective NF-κB activation required for the development of mTECs</td>
</tr>
</tbody>
</table>
through the interactions with TECs, as illustrated in Fig.1.

Concluding remarks

Table 1 shows a general phenotypic comparison between NIK-mutant aly mice and IKK-α-deficient mice. Autoimmune disease is a pathological condition in which the immune system turns on itself and causes serious damage to host tissues through as yet unknown mechanisms. Breakdown of self-tolerance is considered to be the key event in initiating the disease process, and an understanding of the pathogenesis involved is crucial for developing a suitable therapeutic approach. For this reason, it is essential to know how self-tolerance is established within the organized thymic microenvironment. With the advent of thymic organogenesis using thymic precursor cells, it may be feasible to manipulate the thymic microenvironment through the modulation of NF-κB activation pathways, thereby controlling the processes for the establishment of self-tolerance.

Acknowledgements

This work was supported in part by Special Coordination Funds of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and by Grant-in-Aid for Scientific Research from the MEXT.

References

15) Weif H, Carrasco D, Durham SK, Barton DS, Rizzo CA, Ryseck RP, Lira SA, Bravo R: Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family.