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   The discovery of induced pluripotent stem cells (iPSCs) has the potential to drastically alter the 
future of medicine. Further, the achievement of cell lineage conversion by gene transduction is 
expected to make a dramatic contribution to the advancement of basic biology. Currently, various 
iPSC applications have been the focus of much attention due to their potential in regenerative 
medicine. Nevertheless, because the molecular mechanisms underlying the creation of these 
cells have remained elusive, confidence in their safe use in a clinical setting has remained rather 
shaky. In our present review, we discuss genome integrity during iPSC generation, with a particular 
focus on point mutations, to further address the issue of whether iPSC generation causes genetic 
aberrations.  
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Introduction
  The maintenance of genome integrity is of critical 
importance in the iPSC research field. In this review, we 
focus on point mutations that arise in the genomes of 
these stem cells. With the evolution of next generation 
DNA sequencing methods, genome wide point mutation 
analysis has become possible, and the presence of single 
nucleotide variations (SNVs) in the iPSC genome was first 

demonstrated by exome sequencing of a large number of 
iPSCs and detemined to be independent of delivery method 
used to produce these cells1) (Table 1). The accumulation 
of point mutations in iPSC genomes has now been 
confirmed by many groups using exome and whole genome 
sequencing (WGS)2-6). Substantial numbers of SNVs (300
˜1,000/entire genome) have been observed in all of the 
iPSC lines analyzed to date, regardless of the underlying 
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references species somatic cell types reprogramming
method No.of iPSCs sequencing

method

No. of coding
SNVs / line
(average)

No. of genome
SNVs / line
(average)

 Gore A, et al ., 2011.1) human fibroblasts viral, mRNA and
episomal 22 exome seq. 2-14

(6) nt

 Ji J, et al ., 2011.2) human fibroblasts viral 5 exome seq. 5-16
(6) nt

 Cheng L, et al ., 2012.3) human bone marrow cells (CD34+)
 and mesenchymal stem cells episomal 3 whole-genome

seq.
6-12
(8)

1,058-1,808
(1,325)

 Young MA, et al ., 2012.4) mouse fibroblasts viral 10 whole-genome
seq.

3-22
(11)

190-773
(512)

 Ruiz S, et al ., 2013.5) human

keratinocytes, astrocytes,
endothelial cells,
neural stem cells

and mesenchymal stem cells

viral 8 exome seq. 2-12
(5) nt

 Sugiura M, et al ., 2014.6) mouse fibroblasts episomal and
viral

6 iPSCs and
4 ESCs

whole-genome
seq.*

iPSCs: 1-7
(3.5)

ESCs: 0-1
(0.5)

iPSCs:215-574
(362)

ESCs:13-37
(23)**

nt: not tested
*genome coverage shared with parental cells: 55-61%
**estimated number of SNVs on whole genome region: iPSCs 352-990 (average 640), ESCs 23-67 (average 41)

species or somatic cell type. There is no doubt that the 
origin of these SNVs is one of the most important issues to 
be resolved if iPSCs are to have a clinical future. Intriguingly, 
sample testing focusing on randomly selected SNVs 
identified from iPSC genomes showed that a substantial 
body of these mutations already existed in the parent 
somatic cell1). In addition, an analysis of sister iPSC clones 
derived from the same parent somatic cells showed the 
presence of a large number of commonly shared SNVs4). 
Based on these observations, it has been proposed that 
most of the SNVs observed in iPSC genomes already 
existed in the parent cells (hereafter referred to as pre-
existing SNVs). On the other hand, it was also suggested 
that a significant number of SNVs were not pre-existing2). 
Hence, this is still the subject of debate2, 7).
　Needless to say, whether the process of iPSC generation 
intrinsically causes point mutations or not is a crucial 
issue in terms of the use of these pluripotent stem cells 
in regenerative medicine, as this has a direct impact 
on the immunogenicity and tumorigenic potential of 
these stem cells and their derivatives8-11). Hence, if iPSC 
generation causes point mutations to arise, their number, 
type and location in the genome must be known. A 
fuller understanding of the mechanisms governing this 
phenomenon would also enable us to reduce the frequency 
of point mutations and also provide some important clues to 
the mechanisms of genome reprogramming. 

Exclusive identification of de novo point 
mutations
  The ability to exclusively identify de novo point mutations 
and control for any false background signals is critical 
for genome-wide point mutation analysis. Following the 
comprehensive identification of SNVs in iPSC genomes, we 
used an extremely sensitive sequencing technique known 
as ‘ultra-deep sequencing’ to evaluate whether these were 
pre-existing or de novo. Using this sensitive method, only 
the small regions encompassing SNVs are amplified by 
PCR from the parent somatic cell genome and sequenced 
with a standard next-generation methodology. By using this 
approach, more than 105 reads can be obtained for each 
SNV region, enabling the detection of the SNV of interest 
even when it is present in an extremely small number of 
cells within the parent cell population. Previously reported 
ultra-deep sequencing results have revealed that significant 
bodies of such SNVs already existed in the iPSC parent 
cell genomes, though in a small portion of these parent 
genomes1). Furthermore, the possibility cannot be excluded 
that there are pre-existing but very low frequency SNVs in 
the parent cell population that fall below the threshold of 
detection by ultra-deep sequencing. Additionally, common 
SNVs have been identified among sister iPSC clones4). 
Through such observations, the concept was developed 
that most SNVs in iPSCs are pre-existing and that the 
generation of these stem cells does not induce point 
mutations12). 

Table 1. Study of iPSC SNVs
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　The question that arises from the evidence to date is 
whether most SNVs identified in iPSC genomes are 
indeed pre-existing and arose in the parent cell population 
spontaneously. The concern however is that such pre-
existing SNVs can be explained by SNPs. This is because 
significant numbers of unknown and intra-strain SNPs 
exist even in inbred mice, and also as the parent mouse 
embryonic fibroblasts (MEFs) used for iPSC generation 
have usually been prepared from multiple embryos. To 
overcome this situation in our laboratory, we employed 
single embryo-derived MEFs and directly compared our 
iPSC lines with their parent embryos (direct comparison). 
Furthermore, we conducted analyses with new approaches 
focusing on base substitution types and on homogeneity 
within iPSC colonies6). The use of single embryo-derived 
MEFs allowed us to accurately and effectively identify 
de novo point mutations and determine whether there 
were pre-existing or common SNVs among sister iPSCs 
established from the same parent MEF.

Supporting evidence for iPSC generation- 
associated point mutations
1)ESCs vs iPSCs
  A comparison between iPSCs and the gold standard of 
pluripotent stem cells, embryonic stem (ES) cells, has 
provided critical information about various aspects of iPSCs, 
including genetic aberrations. However, there has been no 
success to date with genome-wide point mutation analysis 
of ES cells because it has not been possible to evaluate 
their parent cell genomes. A comprehensive profile of the 
point mutations in ES-cell genomes would provide a vital 
clue to addressing whether genome reprogramming causes 
such mutations. In this regard, we have in our laboratory 
newly established ES cell lines from C57BL/6 mice and 
also obtained both parent genomes from the livers of these 
animals. Further, we have passaged ESCs and iPSCs a 
similar number of times (˜3 passages) to minimize any 
differences that could occur due to spontaneous point 
mutations. The pluripotency of our ES cell lines was verified 

Fig. 1 	 Comparison of the point mutation profiles of iPSCs versus ESCs
(A)The number and the distribution of point mutations at each chromosome. The dots indicate the positions of 
the point mutations. The 2A-4F-118, -119, and -136 iPS cell lines were established using episomal vectors. 
The numbers of identified SNVs are shown in parentheses. 
(B)Mutation numbers. The Y-axis indicates the number of mutations per 109 bp genome.
(C)Ratio of transitions to transversions.
     Direct comparison was as follows,

1)	between the head of single embryos and iPSCs; because the amount of MEF from single embryo is very 
limited, we used the head of each single embryo.

2)	between the livers of both parents and ESCs.
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using a chimera mouse formation test. 
　Point mutation analysis of these pluripotent stem cell lines 
via whole genome sequencing revealed an approximately 
10-fold higher frequency of point mutations in iPSC genomes 
compared with ESC genomes and also clear differences in 
the base substitution pattern, (transition-predominant for ES 
cells but transversion-predominant for iPSCs) (Fig. 1)6). This 
first genome-wide point mutation analysis of ESC genomes 
strongly suggested that the point mutations observed in 
iPSC genomes arose during the genome reprogramming 
process.

2)Substantial frequency of de novo SNVs
　Even when using single embryo-derived MEFs as the 
parental cells in our laboratory, we still identified a large 
number of point mutations within iPSC genomes. We 
conducted a conventional investigation through the ultra-
deep sequencing of material MEF genomes for randomly 
selected SNVs identified in iPSC genomes to determine 
how many pre-existing SNVs were detected by our system. 
In the results, no sequence reads was observed in the 
parent MEF genomes for any of the SNVs assessed. In 
addition, very few common SNVs were observed among 
the sister clones established from the same MEF fraction. 
Taken together, these data indicate that our system of 
employing a direct comparison between iPSC genomes 
and their parent embryo genomes, and the use of single 
embryo-derived MEFs, detects de novo point mutations 
exclusively.       

3)A unique base-substitution profile
　The accumulation of substantial numbers of de novo 
SNVs allowed us to conduct a statistically significant 
investigation of the base substitution types in each case. The 
results of this analysis were of great interest: transversion-
predominant base substitutions were detected in the SNVs 
in iPSC genomes whereas transition-predominant mutations 
were found in the ESC genomes (Fig. 1C)6). Point mutations 
can be categorized into transition and transversion types. 
Transitions are interchanges between purines (‘A’ ⇔
‘G’) or pyrimidines (‘C’ ⇔ ‘T’), resulting in a similar DNA 
configuration. In contrast, transversions are interchanges 
between purines and pyrimidines. 
　Moreover, additional analysis that incorporated the 
timeline of iPSC generation clearly indicated that the 
transversion-predominant SNV pattern is reprogramming 
process-specific (Fig. 2A)6). In contrast, SNVs showed a 

Fig. 2  Base substitution profile during each step of iPSC clone 
establishment

(A)Base substitution profile during the “reprogramming” process 
showing a predominantly transversion pattern. ts, transition; tv, 
transversion. ‘Pre-existing’, SNVs identified in parental somatic 
cells by ultra-deep sequencing or shared between sister clones; 
‘reprogramming’, SNVs not identified in parental somatic cells by ultra-
deep sequencing or not shared among sister clones; ‘passaging’; 
SNVs newly identified in extended cultures. The two studies, by 
Gore et al. and Ji et al., used ultra-deep sequencing with a focus on 
randomly selected point mutation candidates, but the report by Young 
et al. discriminated between each SNV based on whole genome 
sequencing data from sister clones derived from the same somatic cell 
fraction: shared SNVs were categorized as ‘pre-existing’ but each sister 
clone-specific (private) SNV was defined as not pre-existing, i.e. was 
the result of ‘reprogramming’ or ‘passaging’1,2,4). Note that the former 
two studies employed exome sequencing followed by sampling using 
amplicon sequencing.  
(B)Base substitution profiles of SNPs. Approximately 15 million SNPs 
from the dbSNP database were analysed.
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transition-predominance before and after the generation 
steps. Namely, both the pre-existing SNVs which had been 
identified by ultra-deep sequencing and the SNVs which 
arose during the prolonged culture process to establish iPSC 
clones exhibited a transition-predominance. Hence, our 
investigation concluded that iPSC generation-associated 
point mutations have a unique base substitution profile that 
is transversion-predominant. 
　The reason for the transversion-predominance of the 
base substitutions in iPSC genomes became an issue 
of great interest and was also a promising clue to the 
mechanism behind the onset of these mutations. Because 
transition-predominant base substitutions arise in ESC 
genomes and are responsible for most SNPs (Fig. 2B)6), the 
occurrence of the SNVs identified in iPSC genomes cannot 
be explained by usual spontaneous point mutations.

4)Heterogeneity within an iPSC colony
　Although the large number of de novo point mutations 
in iPSCs, the unique base substitution profile within iPSC 
genomes, and the clear differences between ES cells 
and iPS cells in this regard, was a strong indication of the 
presence of iPSC generation-associated point mutations, 
direct evidence for this was still lacking. To obtain such 
evidence, we next focused on the allele frequency of each 
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SNV within an iPSC clone. 
　Almost all SNVs that have been reported in iPSC 
genomes to date exhibit only a 50% allele frequency, and 
not less than a 50% frequency, indicating that they arose 
in only one allele and are present in every cell in an iPSC 
colony4). This simple fact seems to be crucially important 
because if these were not pre-existing SNVs, they would 
have to have arisen in almost all instances via a single 
step in an ancestral fibroblast which had subsequently 
developed into a pluripotent stem cell colony. If this was 
the case, a huge number of the point mutations identified 
in iPSCs would have to arise simultaneously during the 
initial stages of their generation. This challenging concept 
warrants a consideration that these SNVs already existed 
in the parent cells. We conducted an investigation based 
on the hypothesis that iPSC generation-associated point 
mutations arise in a short period around the initial stages 
of the generation of these stem cells. If this hypothesis was 
indeed correct, a heterogeneous point mutation pattern 
would be expected within a single iPSC colony, and this 
could be detected even with whole genome sequencing. 
　Furthermore, to verify the heterogeneity suggested 
by WGS, we independently established sublines from 
individual cells in iPSC clone and investigated the point 
mutation pattern in each case. To establish a single cell-

Fig. 3  Heterogeneity within an iPSC colony
(A)Establishment of sublines from single cells within an iPSC colony.
(B)Timing of the occurrence of point mutations. We identified a large number of de novo SNVs by whole 
iPSC genome sequencing and examined these variants in each single cell-derived subline to investigate 
clonal heterogeneity. This schematic representation indicates the timing of the occurrence of point mutations 
at the conversion from fibroblasts to iPSCs.
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established with only spontaneous point mutations has 
not been totally excluded by the current data. Although a 
number of point mutations have actually been observed 
in all of the iPSC genomes analyzed thus far without 
exception, a significant difference in their number has 
been suggested among iPSCs established using different 
methods. Further clarification of the molecular mechanisms 
behind this phenomenon is crucial to address this issue and 
also to exploit the possibility of reducing the point mutation 
frequency in iPSCs. Needless to say, a better understanding 
of these molecular mechanisms would also yield important 
clues regarding the genome reprogramming mechanism 
itself. Finally, it is noteworthy that the onset of transversion-
predominant point mutations is the first molecular signature 
to be identified for the initial steps of iPSC generation.
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