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　Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic uses owing to their 
ability to differentiate in situ into various cell types with immunosuppressive properties. Clinically, 
MSCs have been used to treat inflammatory diseases, such as steroid-resistant graft-versus-host 
disease. We previously reported a strategy to expand MSC cultures and to induce these cells to 
undergo myogenic differentiation, which is promising for the treatment of muscular diseases. 
Muscular dystrophy is an incurable genetic disease with early mortality and causes skeletal muscle 
weakness with chronic inflammation. Here, we focused on the beneficial properties of MSCs, namely, 
they can undergo mesoderm differentiation, have the ability to fuse with dystrophic muscles, and 
have anti-inflammatory activities. In this review, we highlight and discuss MSC-based therapeutic 
approaches for muscular dystrophy. 
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Introduction
　Multipotent mesenchymal stromal cells (MSCs) from 
bone-marrow are conventionally defined as adherent 
non-hematopoietic cells that express several cell surface 

antigenic markers, such as CD44, CD73, CD90, and 
CD105, but not the hematopoietic markers CD34 or CD451). 
Although they were originally identified in bone-marrow1), 
MSCs can be extracted from numerous tissues including 
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adipose tissue2), heart tissue3), Wharton's jelly4), dental 
pulp5), peripheral blood6), cord blood7), menstrual blood8-10), 
and fallopian tube tissue11). MSCs have been extensively 
studied owing to their ability to self-renew and differentiate 
into many different cell types in culture, particularly cells 
of mesodermal origin such as osteoblasts, chondrocytes, 
adipocytes, and myocytes12, 13). Furthermore, MSCs can 
also differentiate into cells of non-mesodermal origin, such 
as hepatocytes14, 15), neural cells16), and epithelial cells17). 
MSCs can influence immune effector cell development, 
maturation, and function, as well as alloreactive T-cell 
responses, through the production of bioactive cytokines 
and proteins18). The multilineage potential of MSCs has 
been further exploited in their potential use as therapies for 
various diseases, which is feasible because these cells can 
be readily obtained from patients, are easily expanded in 
culture, and are not tumorigenic. Furthermore, the use of 
third-party MSCs in cell therapies is facilitated by the fact 
that these cells are immunoprivileged because they do not 
express human leukocyte antigen (HLA) class II proteins, 
CD40, CD80, or CD8619), and express only low levels of 
HLA class I proteins. Consequently, MSCs are not lysed by 
natural killer (NK) cells or cytotoxic T lymphocytes20).
  Recently, MSCs have obtained market authorization as a 
product for the treatment of acute graft-versus-host disease 
(GVHD) in Canada and New Zealand. MSCs are being 
evaluated in Phase 3 clinical trials to treat Crohn's disease 
and acute radiation syndrome, and in Phase 2 trials to treat 
several ailments such as type I diabetes, acute myocardial 
infraction, and pulmonary disease (Mesoblast Inc., http://
www.mesoblast.com/products/overview). Furthermore, 
MSCs are extremely attractive candidates for cell-based 
strategies that target other diseases such as muscular 
disease21). In this review, we discuss how MSC therapy 
might have beneficial effects on the progression of muscular 
dystrophy via eliciting anti-inflammatory effects and/or 
promoting the regeneration of myofibers.
　　

Myogenic differentiation of MSCs
  MSCs themselves can be induced to differentiate along 
the myogenic pathway, thereby fusing with myotubes and 
promoting the formation of new muscle fibers after being 
transplanted into muscle tissue22).
  MSCs can form muscle cells after treatment with one or 
a combination of 5'-azacytidine (a demethylating agent), 
hydrocortisone23), dexamethasone, ascorbic  acid, and 
growth factors, when co-cultured with immortalized myoblast 

cells (C2C12)24, 25), or when exposed to the conditioned 
media of these cells26). A method has been reported to 
induce skeletal muscle lineage cells from human and 
rat adherent MSCs via transduction with the Notch1 
intracellular domain and administration of certain trophic 
factors and cytokines22). Upon genetic modification with 
a lentiviral vector encoding Pax3, which is the master 
regulator of the embryonic myogenic program, expression 
of myogenic regulatory factors is activated in human MSCs 
after 4 weeks of culture, suggesting that Pax3 enables 
MSCs to differentiate into myogenic progenitors in vitro27).
  We have also reported efficient methods to expand MSC 
cultures obtained from dog bone-marrow and to induce the 
myogenic differentiation of these cells21). CD271 is a marker 
of progenitor cells and bone-marrow-derived MSCs28). 
MSC cultures enriched in CD271+ cells grow better than 
CD271-depleted cultures. Transduction of CD271+ MSCs 
with MyoD-expressing adenovirus vector, as an inducer of 
myogenic differentiation, causes the formation of myotubes 
that express late myogenic markers. These methods may 
be useful to efficiently transplant cells for the treatment of 
muscle disease.
   

Paracrine effects of MSCs
  MSCs secrete distinctively different cytokines and 
chemokines, such as greater amounts of VEGF-α, IGF-1, 
EGF, keratinocyte growth factor, angiopoietin-1, stromal 
derived factor-1, macrophage inflammatory protein-1α 
and β and erythropoietin29). After transplantation, MSCs 
home to interstitial muscle tissue and localize close to 
satellite cells. MSCs induce the myogenic differentiation of 
neighboring satellite cells, as evidenced by the finding that 
isolated cells from muscle in which MSCs have engrafted 
show high myogenic activity and displayed CD45-, sca-1-, 
Mac-1-, CD34+, CXCR4+, β1-integrin+ characteristics30). 
Clinical interest in the application of MSCs in cell therapies 
is not only owing to their ability to differentiate, but also to 
their release of cytokines into the surrounding environment, 
which modifies the developmental fate of neighboring cells 
in a paracrine manner.

Cell therapeutic approach for muscular 
dystrophy
　In this section, we discuss whether the myogenic dif-
ferentiation of MSCs beneficially affects the progression of 
muscular dystrophy. Muscular dystrophy patients exhibit 
skeletal muscle damage that is associated with chronic 
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inflammation, numerous centrally nucleated fibers, and 
continuous cycles of myofiber degeneration/necrosis 
and regeneration. In particular, Duchenne muscular 
dystrophy (DMD) is a severe X-linked muscle disease in 
which mutations in the gene encoding the cytoskeletal 
protein dystrophin result in destruction of the dystrophin-
glycoprotein complexes of the sarcolemma31, 32). The 
resulting alterations in mechanical and signaling functions 
contribute to membrane fragility, necrosis, and immune 
cell infiltration, and cause progressive degeneration of 
striated muscle. The pathology of DMD muscles leads to 
chronic inflammation, fibrosis, fat infiltration, and impaired 
vasoregulation, manifesting as muscle weakness and 
eventually skeletal muscle atrophy33, 34). As the disease 
progresses, wheelchairs and ventilatory assistance are 
required, and patients often succumb to cardiac dysfunction 
and respiratory failure35).
　Cell-based therapies for DMD have the potential to 
restore dystrophin expression and, therefore, also the 
parenchyma of muscle. The following section introduces the 
general concepts behind gene- and cell-based strategies 
to treat DMD. Transplantation of mesoangioblasts, hema-
topoietic stem cells, myoblasts, and muscle-derived stem 
cells has been examined as a possible strategy to treat 
DMD and as a system to deliver therapeutic recombinant 
proteins to target muscle tissues36-38). 
  In dystrophin-deficient mdx mice, transplanted human 
MSCs were incorporated into myofibers and dystrophin 
expression was subsequently restored22, 39, 40). MSCs 
transduced with Notch1 and treated with trophic factors 
and cytokines can differentiate when transplanted into the 
degenerated muscles of rats and mdx-nude mice. The 
induced population contains Pax7+ cells that contribute to 
the subsequent regeneration of muscles22). Transplantation 
of human adipose-derived MSCs transduced with a 
MyoD-coding lentiviral vector into the injured muscles of 
immunodepressed Rag2-/-γC-/- mice resulted in a substan-
tial increase in the number of myofibers and restoration 
of dystrophic expression41). Although the engraftment 
of human MSCs from bone-marrow is improved in the 
presence of Pax3, supported by an approximately 1.3-fold 
increase in the level of myofibers in immunodepressed mdx 
mice, this engraftment is not accompanied by functional 
recovery27).
  In therapeutic approaches using medium-sized animal 
models of DMD, such as dogs, transplantation of heter-
ologous mesoangioblasts in golden retriever muscular 

dystrophy (GRMD) ameliorated and preserved active 
motility42). However, the development of an analogous 
approach for clinical use in humans has been hindered by 
the inability to overcome several obstacles, including poor 
cell survival rates, limited dissemination of injected cells, 
immune responses to allogeneic cells, the presence of 
the neotransgene product in dystrophic muscles, and the 
inability to specifically target the cells to particular regions, 
such as cardiac tissue43).
  In our previous study, we found that wild-type CD271+ 

MSCs in a myogenic cell lineage transplanted into dogs 
with X-linked muscular dystrophy in Japan (CXMDJ) formed 
clusters of muscle-like tissues within 8-12 weeks in the 
absence of immunosuppression21) (Fig.1). In the newly 
formed tissues, expression of developmental myosin heavy 
chain, which is a marker of myogenesis, and dystrophin 

Fig.1	 Successful long-term engraftment and myogenic 
differentiation of CD271+ MSCs

(A) Transplantation procedure. CD271+ mesenchymal stem cells 
(MSCs) were enriched from the bone-marrow of healthy dogs and 
expanded. These cells were transduced with a luciferase-expressing 
lentivirus vector as a marker and a MyoD-expressing adenoviral 
vector, and injected into Duchenne muscular dystrophy dogs without 
immunosuppressants. (B) Engraftment and differentiation. At 12 
weeks after CD271+ MSCs injection, cryosections from the muscle 
of recipients were stained with antibodies specific for luciferase 
expressed in MSCs (green) and the myogenic marker developmental 
myosin heavy chain (dMyHC) (red). The merged image includes 
staining of nuclei with 4', 6'-diamidino-2-phenylindole (DAPI) (blue). 
CD271+ MSCs formed muscle-like tissue that expressed dMyHC at 12 
weeks after transplantation (Quote from ref. 21) with minor revision).
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was up-regulated. In CXMDJ, transplanted MSCs that are 
delivered systemically must specifically engraft into muscle 
tissue. MSCs normally mobilize in the blood in response 
to skeletal muscle injury44), and several homing/migration/
engraftment studies have suggested that MSCs delivered 
systemically can “home” to the site of injury45-49). Intra-
arterial injection of CD271+ MSCs results in engraftment at 
the site of acutely injured muscle and the formation of muscle 
fibers21). These findings suggest that a cell transplantation 
strategy using CD271+ MSCs is a promising treatment 
approach for DMD. 
   Human immature dental pulp stem cells (hIDPSCs), 
which are obtained from decidual tooth tissue and comprise 
a homogeneous population positive for MSC markers, 
are a more convenient cell source than bone-marrow. 
These cells are similar to populations of dental pulp MSCs 
with immunosuppressive activity50). The proliferation and 
neurogenicity of hIDPSCs in dental pulp are more potent 
than those of bone-marrow MSCs, probably because the 
former cells are of neural crest origin. hIDPSCs inhibit the 
proliferation of phytohemagglutinin-stimulated T-cells, and 
therefore would elicit stronger effects than bone-marrow 
MSCs50, 51). After transplantation of hIDPSCs into young 
GRMD dogs without immunosuppression, a limited number 
of muscle fibers express dystrophin52). 
  These approaches using MSCs need to be further de-
veloped to obtain fully differentiated muscle fibers and to 
stimulate functional recovery of skeletal muscles in DMD 
patients.

Therapeutic approach using the immuno-
modulatory properties of MSCs
　MSCs regulate inflammation through mechanisms 
thought to involve the inhibition of monocyte differentiation 
into immature dendritic cells (DCs)53). This results in the 
skewing of DCs toward macrophages54, 55), suppression of 
DC maturation54, 56), inhibition of T-cell and B-cell proliferation, 
suppression of NK and cytotoxic T cell function57), and 
inhibition of neutrophil apoptosis, inducing the generation 
of regulatory T-cells58) (Fig.2). Therefore, the effects of 
MSCs on immune diseases have been investigated59, 60). 
Furthermore, interleukin (IL)-10-transfected MSCs can reduce 
the severity of acute GVHD and aid the recovery of cardiac 
function due to high levels of immunosuppression61, 62). 
Another study reported that human amniotic membrane-
derived mesenchymal cells (hAMCs) markedly increase 
HLA-G expression in vitro following administration of IL-10 

or progesterone, which plays an important role in feto-
maternal tolerance during pregnancy, and, surprisingly, 
also increases the efficiency of cardiomyogenic trans-
differentiation in vitro and in vivo63). hAMCs have a great 
ability to transdifferentiate into cardiomyocytes and to 
acquire immunologic tolerance in vivo, and are, therefore, 
a promising source of allograftable stem cells for cardiac 
regenerative medicine63).
  In dystrophic muscles, activated immune cell infiltrates 
(e.g., T lymphocytes and macrophages) are observed 
during the early stages of disease and play a critical role 
in muscle wasting55-60). Depletion or inhibition of these cells 
significantly improves dystrophic muscle pathology64-66). The 
findings of these studies suggest that much of the muscle 
damage that occurs when dystrophin is deficient is caused 
by inflammatory cells, as well as by direct mechanical 
damage.
　Inflammatory cytokines, serum markers, and intramuscular 
nuclear factor-κB are not upregulated in a δ-sarcoglycan-
deficient dystrophic hamster model following intramuscular 
injection of human- and pig-derived MSCs. Additionally, 
transplantation of these MSCs is associated with the 
formation of new muscle fibers and reduced muscular 
oxidative stress67). However, the majority of studies using 
MSCs in animal models do not report a significant, if any, 
increase in muscle contractile force27). The therapeutic 
effects of MSCs are believed to not only be owing to their 
differentiation in injured tissue, but also to their production 
of paracrine factors that inhibit apoptosis of injected 
cells, induce anti-inflammatory effects, and stimulate the 

Fig.2   Immunoregulation by mesenchymal stems cells (MSCs)
The immunoregulation of various cell types by MSCs through IL-10, 
TGF-β, PGE2, HGF, NO, and HLA-G is shown.
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proliferation of endogenous stem cells at the site of injury. 

Conclusion and future directions
　Clinical interest in MSCs for cell therapeutic applications 
is based on their anti-inflammatory properties and their 
ability to release cytokines into the surrounding environ-
ment, thereby modifying the developmental fate of 
neighboring cells. In this review, we introduced various 
strategies for the engraftment of transplanted cells as a 
therapeutic approach for muscular dystrophies. MSCs 
are a promising therapy for muscle disease because they 
elicit immunosuppressive and/or anti-inflammatory effects 
and can undergo myogenic differentiation contributing to 
muscle repair (Fig.3).
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