
176Inflammation and Regeneration    Vol.34  No.4    September  2014

Special Issue: Mesenchymal Stem Cells and Immunomodulation

Mini Review

Gene-modified mesenchymal stromal cells: A VIP 
experience

Elisabeth Aguilar**, Marién Cobo Pulido** and Francisco Martin*

Genomic Medicine Department. GENYO. Centre for Genomics and Oncological Research: Pfizer/University of 
Granada/Andalucian Regional Government, PTS Granada. Avenida de la Ilustración, Granada, Spain

  Administration of ex vivo  expanded mesenchymal stromal cells (MSCs) represent a promising 
therapy for degenerative and inflammatory/autoimmune diseases. Indeed, mouse MSCs (mMSCs) 
and human MSCs (hMSCs) have shown very promising results in animal models for multiple 
diseases due to their trophic and immunomodulatory activities. However, human clinical trials 
have not reached the success found in preclinical models. The general consensus is that, for most 
applications, we should increase the “therapeutic potency” of MSCs before translation into clinic. 
This goal can be achieved by increasing/improving the migration, engraftment, differentiation and 
immunomodulatory activities of the MSCs. The present article summarizes some of the approaches 
that use gene-modified MSCs (GM-MSC) for the treatment of different disorders. We will also discuss 
our experience using GM-MSCs expressing vasoactive intestinal peptide (VIP) for the treatment of 
multiple sclerosis.
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Mesenchymal stromal cells for cell therapy
  Mesenchymal stromal cells (MSCs) are multipotent cells 
with self-renewal capacity present in virtually all tissues 
and that have interesting properties for clinical use: 1- They 

are ease to isolate and expand, 2- can be differentiated 
into several tissues, 3- have low immunogenicity, 4- migrate 
to inflammatory sites, 5- can suppress the immune res-
ponses and 6- secrete trophic factors that can help to 
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Fig. 1 	 Cell-gene therapy strategies using 
gene-modified MSCs

Allogeneic or autologous MSCs can be used for 
genetic modification using a wide panel of gene 
therapy vectors (viral and non-viral). However, vector 
integration is desirable to maintain gene expression 
during expansion and also for the characterization of 
the medicinal product. Therefore the use of retroviral 
(gammaretroviral or lentiviral) vectors is preferred 
over non-integrative vectors.

the endogenous restoration of different tissues1). These 
properties made the MSCs good candidates for cell therapy 
of a broad panel of diseases2-4) most of which have a strong 
inflammatory/autoimmune component5). 
  Bone marrow-derived MSCs (BM-MSCs) were the first 
MSCs used in preclinical and clinical trials. However, more 
recently, a broad range of alternative sources such as 
umbilical cord, endometrial polyps, menses blood, periphe-
ral blood or adipose tissue have been used.  Adipose tissue 
derived MSCs (hASCs) have been widely used during the 
last years. Their similarity with BM-MSCs, their abundance 
and their proliferative capacity have made hASCs a promis-
ing tool for cell therapy6-10). 
  There are at the moment over 370 clinical trials using 
MSCs of which 27 are in Phase III (data obtained from 
www.clinicaltrials.gov). However, although several Phase 
I and II clinical trials rendered very promising results11-16), a 
clear demonstration of efficacy in large randomized clinical 
trials is still lacking7, 17-21). 

Gene transfer into MSCs to improve ther-
apeutic efficacy 
  Most of the mechanism of action of MSCs are based 
on secreted factors22). In fact for some applications, the 
use of MSCs-conditioned media has a similar effect 
compared to the inoculation of MSCs23, 24). Therefore, 
improving/increasing the production of factors involved in its 
therapeutic activity should be an easy and effective way to 
increase its potency25, 26) (Fig. 1). Viral vectors (adenoviral 

-AdV, adenoassociated-AAV and retroviral-RV) are the 
most potent system for gene transfer. However, only RVs 
achieve sustained and stable expression of the transgene 
on dividing cells and are therefore the vector of choice for 
MSCs gene manipulation. MSCs modified with RV can be 
expanded without lost of transgene expression levels and, 
importantly, they can be characterized before administration 
into the patient. Non-integrative vectors (AdV or AAV vectors) 
have also been used to generate GM-MSCs, however, 
since non-integrative vectors lost the transgene expression 
upon culture, this strategy will required gene modification of 
MSCs before infusion into the patient making difficult their 
characterization for clinical use. 
  GM-MSCs have been specially studied for the treatment 
of neuronal diseases27, 28). Brain derived neurotrophic factor 
(BDNF), Glial cell-derived neurotrophic factor (GDNF) 
and nerve growth factor (NGF) have been expressed in 
MSCs for the treatment of animal models of Huntington's, 
Parkinson's and Alzheimer's disease respectively29-32). GM-
MSCs has also been used for the treatment of spinal cord 
injury (SCI)27). A variety of proteins including neurotrophic 
factors (NT-3, BDNF, GDNF, HGF, MNTS1), growth factors 
(HGF, Shh) and kinases (TrKC) have been expressed in 
MSCs using AdV or RV vectors (reviewed in 27, 33)) with 
promising results.
  Improvement of the therapeutic efficacy of MSCs through 
genetic manipulation have also been pursued for Diabetes34), 
hindlimb ischemia, pulmonary hypertension35, 36), cardio-
myocyte protection37-39), cerebral ischemia40), post-infarc-
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Authors Cell Source Transplantation Therapeutic
Gene

Animal
Model

 Ryu CH et al .64)  Bone marrow-derived MSCs (human) Xenogenic IFN-β EAE
 Cobo M et al .60)  Adipose-derived MSCs (mice) Allogenic VIP EAE
 Payne NL et al .65)  Adipose-derived MSCs (human) Xenogenic IL-10 EAE
 Payne NL et al .66)  Adipose-derived MSCs (human) Xenogenic IL-4 EAE
 Mohajeri M et al .67)  Bone marrow-derived MSCs (human) Xenogenic FOXP3 EAE
 Lu Z et al .68)  Unknown (human) Xenogenic CNTF EAE

Table 1  	Gene-Cell Therapy approaches for the treatment of experimental autoimmune encephalomyelitis (EAE) using 
GM-MSCs

Fig. 2  	Cell-gene therapy for the treatment of 
EAE mice using MSCs/VIP

MSCs were isolated from adipose tissue from 
BalbC mice. After passage 1, MSCs were trans-
duced with lentiviral vector expressing VIP consti-
tutively (CMV promoter). MSCs/VIP were expanded 
for 4-6 passages and analyzed for the secretion 
of bioactive form of the VIP. These allogenic VIP-
secreting MSCs were then inoculated into c57b16 
mice suffering EAE at the peak of disease mice 
(MOG model).

tion myocardial repair41, 42), cartilage repair43-45) and osteo-
genesis46). 

MSCs expressing vasoactive intestinal 
peptide (VIP) for the treatment of multi-
ple sclerosis 
　Multiple sclerosis (MS) is a severe, demyelinating dis-
order of the central nervous system (CNS). MS usually 
begins as a relapsing-remitting (RRMS) disease which 
in about 65% of the cases, develops into secondary-pro-
gressive MS (SPMS). RRMS is characterized by periods 
of acute disability followed by periods of functional re-
covery. However, the SPMS phase is characterized by 
a steady disease progression due to heavy axonal loss 
and neurodegeneration. In general, currently approved 
MS therapies (e.g. IFN-beta, glatiramer acetate and 
mitoxantrone), have shown good therapeutic benefit on 
RRMS but not on SPMS. In addition they are associated 
with side effects including depression, multifocal leuko-
encephalopathy and hypersensitivity reactions. 
  MSCs were initially thought to be a promising therapy 
of MS because of their ability to migrate into sites of 

inflammation, for its immunomodulatory activity and for 
its ability to enhance neurogenesis. However, although 
MSCs demonstrated good therapeutic activity of MSCs on 
the EAE mouse model when treated at early stages47, 48), 
human trials were somehow disappointing49-51). Therefore, 
gene modifications of MSCs have been also pursued to 
increase their therapeutic potential for multiple sclerosis 
(see Table 1). We hypothesized that increasing the potency 
of MSCs through forced expression of VIP could be a good 
strategy. VIP is a neuropeptide of 28 amino acids with 
strong immunoregulatory (dampening T-cell responses 
and lowering inflammation)52, 53) and neuroprotective 
activities (blocking microglial activation and induction 
of neuroprotective factors)54). Several authors have 
demonstrated important therapeutic effects of systemic 
delivery of synthetic VIP in several animal models of 
autoimmune diseases (Reviewed in 55)) including MS56-58). 
In addition, a phase I/II clinical trial in patients with sar-
coidosis demonstrated that inhalation of VIP decreased 
the levels of inflammatory markers in lung and increased 
the number of suppressive regulatory T-cells (Tregs)59). 
We therefore generated MSCs/VIP using lentiviral vectors 
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that constitutively express the cDNA of VIP gene (Fig. 2). 
Injection of MSCs/VIP into mice with severe established 
disease ameliorated disease symptoms while unmodified 
MSCs had no effect under the same conditions60). We will 
discuss this study in more detail to uncover some of the 
successes and failures of this approach.

1)	Generation of MSCs secreting the bioactive form of 
VIP: Stability of expression

  We routinely generated MSCs that stably secreted of 
1-2 ng/ml of the fully processed 3.3kd VIP as detected by 
ELISA60). We could also achieve short term expression of 
up to 20-30ng/ml of VIP using higher MOIs of LentiVIP. 
Interestingly, the 19.2-kDa preproVIP form was the main 
VIP protein secreted and other polypeptides with lower 
molecular weight were also visible. It is known that both 
forms (3.3kd and 19.2kd) are bioactive and therefore the 
secretion of both polypeptides could be an important way 
to improve bioactivity of the final MSCs/VIP product. 
　The MSCs/VIP cell lines maintained their main phenotypic 
characteristics in terms of morphology, differentiation po-
tential and expression of membrane markers. Importantly, 
the different MSCs/VIP cell lines shared the following prop-
erties: 1- The expression of VIP was maintained in MSCs/
VIP over time in culture for up to 15 passages. 2- The VIP 
secreted was more stable than the synthetic VIP peptide. 
3- The inmunomodulatory capacity of MSCs/VIP cells 
was slightly increased compared to MSCs. Therefore by 
injecting MSCs/VIP we are introducing cells able to migrate 
to the inflammatory sites, deliver bioactive VIP and, in 
addition, exert all the therapeutic roles of MSCs but with a 
better inmunoregulatory activity.

2)	MSCs/VIP are more potent than MSCs for the treat-
ment of EAE

  Most studies showing therapeutic effect of MSCs on 
EAE administered the cells at early stages of the disease. 
However, MSCs do not have significant therapeutic activity 
when the disease progress toward a more aggressive 
phenotype61-63). We explored the therapeutic potential 
of MSCs/VIP and MSCs at peak of disease (complete 
paralysis of back legs and partial paralysis of front legs). 
Only MSCs/VIP-treated mice recovered from complete hind 
leg paralysis toward a moderate hind leg paresis whereas 
the MSCs-treated mice developed a more aggressive 
disease. None of the MSCs/VIP treated mice required to 
be sacrificed, while 50%, and 70% of the mice treated with 

MSCs and PBS respectively were sacrificed due to EAE 
severity60). 

3)	Potential mechanisms behind the therapeutic effects 
of MSCs/VIP

  The aim of using MSCs/VIP for the treatment of severe 
MS was to deliver VIP and MSCs to the damaged CNS 
to stop neurodegeneration and inflammation and to favor 
regeneration. We found that MSCs/VIP treated mice had 
lower T cell responses, better CNS integrity and reduced 
astrogiosis compared to MSCs-treated mice. These data 
indicated that the VIP secreted by MSCs/VIP must be 
playing a role dampening inflammatory responses and/or 
protecting damaged neurons. However, the decreased 
neuronal degeneration not necessarily proves a direct 
action of VIP in the CNS. Indeed, the improved CNS in-
tegrity of MSCs/VIP treated mice could be due to a lower 
immune attack followed by endogenous repair mechanisms. 
To demonstrate a direct action of MSCs/VIP in the CNS, 
over-expression of VIP up-regulated genes (BDNF and 
ADNP) and decreased expression of VIP down-regulated 
genes (IL-17, TNF-alpha, IL-6 and iNOS) must be shown. 
However we found a similar decrease in proinflammatory 
cytokines in the spinal cords of both MSCs- and MSCs/VIP- 
treated mice. Similarly IL-10, BDNF and ADNP were also 
increased in both groups. In addition, only a fraction of 
the MSCs reached the inflammed CNS while most of the 
engrafted cells ended in the liver and spleen. Therefore 
our data pointed to a peripheral effect of MSCs/VIP rather 
than an effect due to migration of the MSCs/VIP to the 
damaged CNS. Our theory is that the therapeutic activity 
of MSCs/VIP relies on their effect in the spleen and lymph 
nodes. The joint activities of MSCs and VIP will suppress 
T cell responses, inflammatory macrophages and possibly 
affect dendritic cells phenotype (interfering with their 
function). However, a possible effect of MSCs/VIP directly 
in the damaged CNS cannot be completely eliminated 
since we found some evidences (although not significant) 
of VIP activity. For example, we detected a small increase 
in Foxp3 mRNA in the CNS of mice treated with MSCs/
LentiVIP compared with those treated with MSCs controls. 
It is also possible that the MSCs/VIP reached the CNS but 
their effect could only be detected during the first days after 
inoculation. New experiments are on-going in our laboratory 
to investigate this possibility.
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Conclusions Remark 
  Our experience using GM-MSCs for the treatment of EAE 
demonstrated that we can improve the therapeutic activity 
of MSCs without altering their main properties. Indeed, 
since the main therapeutic effects of MSCs are based 
on their inmunomodulatory activitity and the secretion of 
trophic factors, the over-expression of molecules having 
these effects endorses MSCs with a higher potency. 
However there still too many unanswered question in terms 
of mechanism of action, migration potential and durability 
of the engraftment. In addition, we still must demonstrate 
that gene manipulation does not have any side effects on 
MSCs, such as cell transformation. Once we can answer 
all these questions we will be in a position to translate GM-
MSCs into clinic.
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