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   Inflammation is self-regulated to preserve the functions in the eye, because the eye has immune
privilege. At present, three major mechanisms prevail regarding the molecular mechanisms of
immune privilege in the eye: there are (a) anatomical, cellular, and molecular barriers in the eye;
(b) eye-derived immunological tolerance, the so-called anterior chamber-associated immune
deviation; and (c) immune suppressive intraocular microenvironment. In this mini-review, the
mechanisms of immune privilege that have been learned from ocular inflammation animal mod-
els, especially corneal transplantation, are described. The functions of new molecules on local
immune regulation within the cornea are reviewed. Therapeutic strategies for restoring immune
privilege are also introduced.
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Introduction
　Immunological response is the necessary system to pro-

tect the biological body. But ocular tissue damage due to

excessive inflammation can lead to loss of sight, because

the eye is constructed from tissue with little or no capacity

for regeneration, specifically, corneal endothelial cells and

retinal cells cannot proliferate in vivo.

　For that reason, ocular tissue damage due to excessive

inflammation can lead to loss of sight. Accordingly, the eye,

like the brain and reproductive organs have inherent immune

privilege1, 2), and inflammation is self-regulated to preserve

the organ functions. In addition, corneal transplants are the

least-rejected among all organ transplants, and that charac-

teristic is also attributable to immune privilege1, 2). When cor-

neal transplantation is performed on eyes that have been

deprived of immune privilege, the rejection rate becomes as

high as in the cases of heart and skin transplantation1-3).

　Early experiments by Medawar and by Barker and Billing-

ham indicated that the cornea has the capacity to escape

destruction by the allo-immune rejection process4, 5).
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　Streilein and colleagues has elucidated, that it is not just

due to immunological ignorance, but also an active immune

suppression mechanism1, 2). Progress has been made in ana-

lyzing the regulatory mechanisms in ocular inflammation by

using animal models of corneal transplantation and autoim-

mune uveitis.

　Immune-privileged sites are defined operationally as sites

in the body where foreign tissue grafts can survive for ex-

tended or indefinite periods of time, whereas similar grafts

placed at conventional body sites are acutely rejected1). Im-

mune-privileged tissues are defined operationally as foreign

organs or tissues that experience extended, often indefinite

survival, when placed at conventional body sites, whereas

non-privileged tissues are acutely rejected at conventional

sites. A partial list of such tissues and sites is provided in

Table 15-7).

　Certain progenitor cells also have inherent immune

privilege7). The immunogenic and antigenic properties of the

central nervous system (CNS) progenitor cells was studied

by grafting into a conventional (i.e., non-immune-privileged)

site, namely, beneath the kidney capsule. Allogeneic CNS

progenitor cells survived at least 4 weeks in a conventional

site, during which time they neither sensitize their hosts nor

express detectable levels of major histocompatibility com-

plex (MHC) class I or II7). These in vivo data were in accord

with flow cytometric results showing that CNS progenitor cells

do not express MHC class I or class II, either at baseline or

upon differentiation in 10% serum7). These results revealed

CNS progenitor cells to possess inherent immune privilege.

Molecular mechanism of immune privi-
lege in the eye
　At present, three major lines of thought prevail regarding

the molecular mechanisms of immune privilege in the eye:

(1) there are anatomical, cellular, and molecular barriers in

the eye; (2) eye-derived immunological tolerance, the so-

called anterior chamber- associated immune deviation

(ACAID); and (3) immune suppressive microenvironment in

the eye.

(1)Anatomical and cellular barriers in the cornea

　Normal cornea lacks blood and lymphatic vessels8), be-

cause VEGFR (vascular endothelial growth factor receptor)-

3 and soluble VEGFR-1 expressing in the cornea respec-

tively block VEGF (vascular endothelial growth factor)-C and

VEGF-A to inhibit lymphangiogenesis9-11). Therefore, con-

siderable time passes after corneal transplantation before

antigen recognition occurs in the regional lymph nodes and

effector cells reach the graft. In addition, the corneal epithe-

lial cells, keratocytes, and endothelial cells, do not express

MHC class II molecules and also express only low levels of

MHC class I molecules8, 12). This means that the main tar-

gets of a rejection reaction are not MHC antigens, but the

minor H antigens in the corneal allografts13). The central part

of the cornea, which is used as donor tissue, contains only a

small population of major histocompatibility complex (MHC)

class II-expressing antigen-presenting cells (APCs)14). Al-

though bone marrow-derived cells have been reported to be

present within normal cornea, most such cells display an

immature phenotype lacking MHC class II expression15).

Therefore, the role of antigen presentation in the regional

lymph nodes after corneal transplantation is carried out mainly

by host- derived APCs rather than donor-derived APCs, and

it is thought that recognition of donor antigens occurs in indi-

rect fashion, by host CD4+ T cells via donor antigen-bearing

host MHC class II molecules on host APCs13, 16).

　Thus, it can be surmised that the post-transplantation im-

mune-response is weaker in the case of corneal transplants

compared with other organ grafts because of not only the

anatomical characteristics of the corneal tissue but also its

low antigenicity and the above-described mechanisms of

antigen presentation and recognition.

(2)Anterior chamber-associated immune deviation

　Anterior chamber-associated immune deviation refers to

a phenomenon in which antigen-specific systemic immuno-

Table1  Body sites and tissues that are immune privileged

　 setiS 　 seussiT

　 ,rebmahcroiretna,aenroc:eyE
　 ecapslaniterbusdnaytivacsuoertiv

　 ,rebmahcroiretna,aenroc:eyE
　 ecapslaniterbusdnaytivacsuoertiv

　 mutairtsdnaselcirtnev:niarB 　 droclanipsdnaniarB

　 suretutnangerP 　 atnecalP

　 yravO 　 yravO

　 sitseT 　 sitseT

　 xetroclanerdA 　 reviL

　 selcillofriaH

　 sromutniatreC 　 sromutniatreC

　 sllecretrotinegorpniatreC
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logical tolerance is induced to an antigen that has been in-

troduced to the anterior chamber in rodent eyes1, 2). ACAID

is a phenomenon in which antibody responses are preserved

while cellular responses such as delayed type hypersensi-

tivity (DTH) and cytotoxic T cell (CTL) are suppressed. ACAID

is induced in relation to various kinds of antigens, including

allo-transplantation antigens, soluble protein antigens, viral

antigens, and tumor antigens, and it has been demonstrated

to be involved in various events such as acceptance of cor-

neal transplants, autoimmune uveitis, acute retinal necrosis

(ARN) in a fellow eye that experienced herpes virus infec-

tion in the anterior segment, or progression of intraocular

malignant melanoma, in mouse models1).

　In several areas, the findings from studies in the mouse

model can be extrapolated to understanding the pathogen-

esis in human patients. For example, patients with ARN

develop an ACAID-like response to viral antigens in the in-

traocular compartment that disappears as the disease re-

solves17-19).

  The eye and the spleen are involved in the induction of

ACAID (Fig. 1).

  Transforming growth factor (TGF)-β2, alpha-melanocyte-

stimulating hormone (MSH), vasoactive intestinal peptide

(VIP), and thrombospondin (TSP)-1 in the anterior chamber

are involved in the induction of APC mediators of ACAID,

and eye-derived APCs such as macrophages that express

F4/80 molecule pass across the trabecular meshwork, enter

the bloodstream, and reach the spleen20-24). The eye-derived

APCs that reach the marginal zone in the spleen produce

TGF-β2, macrophage inflammatory protein 2 (MIP-2), and

CXC-chemokine ligand 2 (CXCL2) and attract natural killer

T (NKT) cells25). Then CD1d molecules that are expressed

on the surface of the APCs bind with receptors that are ex-

pressed on the surface of the NKT cells, thereby presenting

the antigens26). NKT cells produce TGF-β, IL-10, RANTES,

CC-chemokine ligand 5 (CCL5), and TSP-127, 28). When mar-

ginal zone B cells are also present in this environment rich in

immunomodulatory factors, clusters comprised of these three

cell types form29, 30). When CD4+ and/or CD8+ T cells that are

attracted to those clusters recognize the antigens being pre-

sented by the eye-derived APCs and the marginal zone B

cells, they differentiate into ACAID- inducing regulatory T

cells (ACAID-Treg). CD4+ ACAID- Treg inhibit the differen-

tiation for Th1 cells in secondary lymph tissues such as lymph

nodes, while CD8+ ACAID- Treg inhibit the function of effec-

tor T cells (Th1 and Th2) in the local site31, 32). It was recently

reported that thymocytes and splenic γδ  T cells are also

necessary for induction of ACAID, and it can be understood

that immune privilege in the eye is sustained through the

cooperation of various cells from organs other than the eye

itself (Fig. 1)1, 2, 33).

　Following corneal transplantation, ACAID is induced by

the mechanism described above after the transplantation

antigens on the endothelial surface of the cornea are taken

up by the eye-derived APCs in the anterior chamber and

transported to the spleen1, 2). Induction of ACAID leads to

inhibition of the allo-antigen specific DTH and results in long-

term survival of the graft16, 34, 35). ACAID cannot be induced in

the case of infiltration of lymph vessels into the cornea, su-

turing, inflammation, trauma, or neurotomy in the cornea. In

Fig.1  Induction of ACAID
In the anterior chamber, which contains TGF-β2 and

TSP-1, the eye-derived antigen-presenting cells have

captured antigens. The eye-derived APCs enter the

bloodstream, reach the marginal zone of spleen, and

produce TGF-β, MIP-2, and CXCL2. These cells at-

tract and bind, via CD1d molecules, to NKT cells. The

NKT cells produce TGF-β, IL-10, CCL5 and TSP-1;

attract marginal zone B cells; and then form clusters

comprised of these three cell types. T cells, which have

presented the antigens in clusters, then differentiate

into ACAID-Treg. CD4+ ACAID-Treg inhibit the differ-

entiation of Th1 cells in the lymph nodes, while CD8+

ACAID-Treg inhibit the function of effector Th1 and Th2

cells in the local site.
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this situation, the eye is said to be at high risk of rejection,

and in animal models of corneal transplantation, the rejec-

tion rate within 3 weeks after transplantation is 100%3, 34).

Clinically, as well, rejection reactions readily occur in patients

presenting this condition.

(3)Molecules maintaining an immune suppressive in-

traocular microenvironment

　As the anatomical and cellular barriers, or ACAID, are not

absolute, innate and adaptive immune cells and molecules

can still access the eye. In response to threats to vision, the

eye has soluble and cell surface immunomodulatory factors

that act within the oculi to suppress cells and molecules that

mediate innate and adaptive immune inflammation1). This

intraocular milieu is called the immune suppressive microen-

vironment. The functions of the various cells and factors that

manage natural immunity and acquired immunity are inhib-

ited by the various factors that are expressed in the anterior

segment and are shown in Table 21, 2, 20, 21, 36-47). Among those

factors, α-melanocyte-stimulating hormone, vasoactive in-

testinal peptide, calcitonin generelated peptide, TGF-β2,

and TSP-1 regulate the functions of macrophages and den-

dritic cells. TGF-β2 and TSP-1 are essential factors for the

induction of ACAID as described in the previous section. As

shown in Table 2, various immunomodulatory factors are

expressed in corneal endothelial cells and iris-ciliary body.

　Our group have elucidated that the inhibitory costimulatory

signaling　molecules such as B7-H145), B7-H346), glucocor-

ticoid-induced tumor necrosis factor receptor family-related

protein ligand (GITR-L)47), and galectin (Gal)-948), are involved

in immune suppression in the cornea. These molecules are

introduced below (Fig. 2).

i)T-cell apoptosis mediated by B7-H1 within the eye

　B7-H1 (PD-L1) was identified as a new B7 family mol-

ecule that binds to programmed death (PD)-1 on the sur-

　 rebmahcroiretnaehtnisrotcafelbuloS
　 )sserppusotsrotcaf/sllectegrat(

　 aenrocehtfoselucelomecafruslleC
　 ydobyrailic-siridna

α　 HSM-
　 )slihportuen,segahporcam,sllecT( 　 )sllecT()1L-DP(1H-7B

　 )sllecT(PIV 　 )?(3H-7B

　 )sllecT(nitatsotamoS 　 )sllecT()4ALTCaiv(2-7B

　 )segahporcam(PRGC 　 )slihportuen,sllecT()L59DC(LsaF

　 -FGT β2
　 )sllecKN,segahporcam,sllecT( 　 )sllecKN,sllecT(bIssalcCHM

　 )segahporcam(1-PST 　 )tnemelpmoc(95DC,55DC,64DC

　 )sllecKN(FIM 　 )llecT(9-)laG(nitcelag

　 )1-LI(aR1-LI 　 )llecT(dangilRTIG

　 )slihportuen,sllecT(LsaFs

　 )tnemelpmoc(bi3C,95DC,55DC,64DC

Table 2 Immunomodulatory factors expressed in the anterior

segment of the eye

α-MSH α-Melanocyte stimulating hormone, VIP vasoactive intesti-

nal peptide, CGRP calcitonin gene-related peptide, TGF-β2 trans-

forming growth factor-β 2, TSP-1 thrombospondin, MIF macrophage

migrating inhibitory factor, IL-1Ra interleukin 1 receptor antagonist,

sFas L soluble Fas ligand, CTLA4 cytotoxic T lymphocyte antigen 4,

GITR glucocorticoid-induced tumor necrosis factor (TNF) receptor fam-

ily-related protein

Fig.2 The mechanism of the molecules to in-

hibit T cell
B7-H1 induces apoptosis of PD-1+T cells and Fas L

induces T-cell apoptosis via Fas. Gal-9 also induces

apoptosis of T cells and protects corneal endothelium.

GITRL has the functions to induce Foxp3+CD25+

CD4+Treg via GITR. B7-H3 is involved in induction of

ACAID.
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face of activated T cells and sends inhibitory signals to the T

cells49). In ocular tissues, B7-H1 is constitutively expressed

in endothelial cells of the cornea, some stromal cells, iris-

ciliary body, and the neural retina. The rejection reaction af-

ter corneal transplantation is intensified by blockade of B7-

H1 or PD-1 with antibodies45). B7-H1 expressed in the cor-

nea induces apoptosis of PD-1-expressing T cells, and de-

letion of effector T cells in the cornea results in inhibition in

the effector phase of the rejection reaction45). It is interesting

that the T-cell apoptosis mediated by B7-H1 has been only

observed in immune privileged tissues or sites such as tu-

mors, liver, and cornea so far50, 51). Corneal endothelial cells

also constitutively express Fas ligand, and apoptosis of ef-

fector T cells is induced via Fas41-43). It is unclear whether, in

this state of the effector T cells having been eliminated from

the eye, B7-H1 and Fas ligand interact on the surface of the

corneal endothelial cells (Fig. 2).

　The culture system of corneal tissue and T cells in vitro

has been established and shown that B7-H1 expressed in

the cornea shows local immunosuppressive activity45). This

system permits complete elimination of any involvement of

the secondary lymphatic organs and makes it possible to

isolate and analyze only the effector phase of the rejection

reaction when the corneal endothelial cells has been dam-

aged by effector T cells. The results showed that B7-H1 ex-

pressed in the corneal cells not only inhibited corneal endot-

helial damage by allo-reactive T cells but also inhibited by-

stander damage caused by activated T cells that are spe-

cific to third party antigen. In addition, PD-1 on the surface of

the T cells was up-regulated as a result of contact with the

corneal cells, thus accelerating apoptosis.

　As described above, the PD-1/B7-H1 pathway is more

involved in interactions between the effector T cells and the

corneal cells within the eye than in the immune responses in

the secondary lymphatic organs45). Thus, these molecules

contribute to maintenance of the local immune suppressive

microenvironment in the eye.

ii)GITR Ligand－－－－－Mediated Local Expansion of Regula-

tory T Cells within the eye

　The pathway between glucocorticoid-induced tumor ne-

crosis factor (TNF) receptor family-related protein (GITR) and

GITR ligand (GITRL) have been shown to control the func-

tion of regulatory T cells. GITR is a type I transmembrane

protein of the TNF receptor superfamily52, 53). GITRL was

expressed constitutively in the cornea and iris-ciliary body47)

(Fig. 2). If GITRL was blocked by peritoneal injection of an-

tagonistic mAbs in recipients of corneal allografts, the al-

lografts became more vulnerable to rejection47). This is

caused by that GITRL inducing the expansion of Foxp3+

GITR+CD25+CD4+ Treg within the cornea after corneal trans-

plantation. And it was evaluated that corneal endothelial cells

were destructed by CD4 T cells in vitro, Destruction of cor-

neal endothelial cells by T cells was significantly enhanced

in GITRL-blocked cornea compared with control cornea.

Foxp3+CD25+CD4+Tcells were increased after incubation

with GITRL-expressing cornea, but not with GITRL- blocked

cornea. GITRL-dependent expansion of Treg within the cor-

nea is one mechanism underlying immune privilege in cor-

neal allografts47).

iii)T-cell apoptosis mediated by galectin-9/Tim-3

　T-cell immunoglobulin and mucin domain (Tim)-3 is a regu-

latory molecule for T-cell function, and galectin (Gal)-9 is a

Tim-3 ligand48). Gal-9 is constitutively expressed on the cor-

neal epithelium, endothelium and iris-ciliary body in normal

mouse eyes (Fig. 2). Allograft survival in recipients treated

with anti-Tim-3 monoclonal antibody (mAb) or anti-Gal-9 mAb

was significantly shorter than that in control recipients48). In

vitro, destruction of corneal endothelial cells by allo-reactive

T cells was enhanced when the cornea was pretreated with

anti-Gal-9 mAb48). And when the co-culture of allo-reactive T

cells and corneal endothelial cells were treated with anti-

Gal-9 mAb, apoptosis of CD4+ T cells was significantly sup-

pressed compared to control48).

　It was proposed that constitutive expression of Gal-9 plays

an immunosuppressive role in corneal allografts. Gal-9 ex-

pressed on corneal endothelial cells protects them from de-

struction by allo-reactive T cells within the cornea.

iv)ACAID induction mediated by B7-H3

　B7-H3 was recently identified as a new B7 family

molecule46), and in the eye, B7-H3 is constitutively expressed

in corneal endothelial cells and the iris-ciliary body, and that

a rejection is induced after corneal transplantation in experi-

mental hosts to which anti-B7-H3 blocking antibody had been

intraperitoneally administered (Fig. 2)54). It is of interest that

ACAID is not induced in such animals administered with anti-

B7-H3 antibody. That is, B7-H3 is involved in induction of

ACAID-Treg that is dependent on the spleen and mediated

by eye-derived antigen-presenting cells, and it thus plays a

different role from that of B7-H154). Also, the possibility that
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B7-H3, like the previously described B7-H1, plays a role in

eliminating or inhibiting effector immune cells within the cor-

nea remains to be established.

Therapeutic strategies for restoring cor-
neal immune privilege
　As it is described above, the eye modifies and regulates

immune responses in order to prevent inflammation-medi-

ated tissue destruction. This is accomplished by using a va-

riety of molecules. Understanding how immune privilege can

be modified in the cornea will lead to the development of

new therapeutic approaches to tissue transplantation and

autoimmune disease.

(1)Modifying immunogenic potential of the tissue:

　The different layers of the cornea display either immuno-

genicity or immune privilege43).The properties of one layer

can influence the properties and fate of another layer. The

primary immunogenicity of the cornea as an allograft re-

sides within the epithelium43). On the other hand, the corneal

endothelium not only lacks inherent immunogenicity, but it

also prevents allosensitization by the corneal stroma43). Thus,

the immune privilege of the cornea resides solely with the

endothelium. Further, constitutive expression of FasL and

B7H1(PD-L1) is critical to the corneal immune privileged sta-

tus42, 45). Simply covering an epithelium-deprived allogeneic

corneal graft (stroma plus endothelium) with an epithelium

that was genetically identical to the graft recipient virtually

eliminate rejection when transplanted into low-risk and even

into high-risk recipients beds. Recipients of these composite

corneal grafts show no evidence of donor-specific sensitiza-

tion, implying that graft acceptance might result from immu-

nological ignorance3, 55).

(2) Restoring the anatomical and molecular barriers:

　Inhibition or suppression of corneal haemangiogenesis and

lymphangiogenesis is one approach to restore the anatomi-

cal barriers in the cornea. Systemic or topical application of

antagonistic antibodies to vascular endothelial growth factor

(VEGF)-A and VEGFR-3 has been reported to promote cor-

neal allograft survival9, 10). Administration of soluble VEGFR-2

that inhibits developmental and reparative lymphangiogenesis

by blocking VEGF-C function, suppresses lymphangiogenesis

but not hemagiogenesis induced by corneal suture injury or

transplantation, enhanced corneal allograft survival11).

　Gene therapies to transfer the following immune modulat-

ing factors are also potential strategies for restoring immune

suppressive microenvironment in the eye. Overexpression

of soluble TNF receptor, soluble CTLA(cytotoxic T lympho-

cyte-associated antigen)-4, IL(interleukin)-10, IL-12p40 sub-

unit, indoleamine 2, 3-dioxygenase, nerve growth factor have

been shown to modify immune privilege and lead to pro-

longed corneal graft survival in animal models12, 56-60). Topi-

cal application of doxycycline, which is one of the chemically

modified tetracyclines, has been reported to up-regulate the

expression of Fas L and prolong the allograft survivial61).

　Induction of anti-inflammatory and immunosuppressive

molecules in the aqueous humor is also one of the effective

strategy for corneal allograft survival. Treatment with local

alpha-MSH suppressed allo-specific DTH and T cell infiltra-

tion into the allograft, and resulted in acceptance of corneal

allograft62).

(3) Inducing T regulatory cells (Treg):

　Inducing Treg is an effective approach to modify and en-

hance immune privilege. Keino et al. has recently shown

that an active metabolite of vitamin A, all-trans retinoic acid

(ATRA), synergized with TGF-β to induce Foxp3(+) T regu-

latory cells and reciprocally inhibited development of Il-17-

producing T helper cells (Th17) induced by TGF-β and IL-6.

ATRA treatment reduced inflammation in experimental au-

toimmune uveoretinitis (EAU)63).

　Induction of ACAID-inducing Treg is also one of the effec-

tive strategy for corneal allograft survival. Several laborato-

ries have showed that induction of ACAID, through the

intracameral injection of alloantigens before keratoplasty,

results in a marked reduction in corneal graft rejection35, 64-66).

Conclusion
　The eye, which is endowed with immune privilege, is a

rare organ that permits analysis of the self-regulatory mecha-

nisms for inflammation in organs. The normal eye possesses

an anatomical barrier mechanism, ACAID, and a molecular

mechanism of an immune suppressive intraocular microen-

vironment. This information not only helps discern potential

mechanisms underlying many ocular disease conditions but

also elaborates on mechanisms underlying the induction and

maintenance of immunologic tolerance, an integral compo-

nent of immune privilege. Therefore these studies provide

the background for the development of new therapeutic strat-

egies applicable to a broad range of tissue transplants and

inflammatory diseases relevant to the eye and other sites.
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