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   Hypoxia is a common feature of highly proliferating tissues and tissues with inflammation. The
transcriptional response to hypoxia involves activation of signal transduction pathways, which
is mainly mediated by post-translational modifications of signaling molecules, transcription fac-
tors and histones. Activation of hypoxia responsive transcription factors HIF and NF-κκκκκB is a
subject of regulation by reversible phosphorylation and acetylation. Moreover, hypoxia affects
the balance between protein tyrosine kinases and protein tyrosine phosphatases as well as
mitogen-activated protein kinases (MAPK) and mitogen activated kinase phosphatases (MKPs).
Activity of both histone acetyltransferases and histone deacetylases and their association with
transcription factors is specifically regulated in hypoxic and ischemic conditions. Hypoxic and
cancerous switch from mitochondrial oxidative phosphorylation to glycolitic metabolism is regu-
lated by acetylation of enzymes participating in maintaining cellular energy metabolism. This
review discusses the current research implicating the regulation of protein post-translational
modifications in hypoxic environment. Among the diversity of protein modifications, the regula-
tion of acetylation and phosphorylation will be described in detail with emphasis on how these
modifications affect dynamic control of cellular signaling in hypoxia-related physiological re-
sponses and pathologies. Finally, the potential of targeting post-translational modifications as
therapeutic approach in the treatment of hypoxia-related disorders will be discussed in the con-
clusion.
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Fig.1 Mechanisms of HIF-1α regulation under normoxic and

hypoxic conditions
Under normoxic conditions, HIF-1α is hydroxylated at Pro residues

by oxygen-dependent protein hydroxylases (PHDs) followed by bind-

ing to von Hippel Lindau protein (pVHL). This event promotes the

polyubiquitination of HIF-1α and subsequent 26-S-proteasomal deg-

radation. Factor-inhibiting HIF (FIH) hydroxylates Asn residue in the

carboxy-terminal activation domain, which blocks CBP/p300 co-acti-

vator recruitment. In hypoxia, HIF hydroxylases are inactive. Stabi-

lized HIF-1α migrates to the nucleus and associates with HIF-1β
and the CBP/p300 co-activator. HIF-1 heterodimer activates genes

that possess hypoxia-response elements (HRE).

Introduction
　Various pathologies, whether generated in response to

injury, autoimmunity or infection, although differ in their etiol-

ogy, are characterized by common changes in metabolic

activity referred to as inflammation. At a certain stage of each

of these diseases, alteration of blood supply and inflamma-

tory activation can result in limited oxygen availability

(hypoxia). Inflammatory disorders with hypoxic component

include atherosclerosis, rheumatoid arthritis, colitis, inflam-

matory bowel disease, cancer, obesity, diabetes mellitus and

many others1, 2). Hypoxic condition is also important for nor-

mal physiological processes such as embryonic development,

stem cell maintenance, and for adaptation to exercise and

high altitude.

　Cellular responses to changes in oxygen tension lead to

the activation of a transcriptional program that is under the

control of signal transduction pathways. Subsequently, to

maintain cellular and tissue homeostasis, rearrangement of

global gene expression profile is occurring in response to

hypoxia. Hypoxia-inducible factor (HIF) family is considered

as a major transcription factor that controls cellular and tis-

sue adaptive responses to hypoxia (Fig.1). In addition to HIF,

cellular function at low oxygen levels depends on other tran-

scription factors and cellular pathways, such as nuclear fac-

tor-kappa B (NF-κB), cAMP response element binding pro-

tein (CREB), p53, Myc family and others1, 3).

　Cellular signals integrated into coordinated program of gene

expression through post-translational modifications (PTMs).

PTMs regulate many critical events in functional proteomics:

they influence and control enzymatic activity, protein confir-

mation, cellular localization and interaction with other cellu-

lar molecules such as proteins, nucleic acids, lipids, and co-

factors. Protein modifications are very diverse in nature to-

taling greater than 200. Among most common modifications

are phosphorylation, acetylation, glycosylation, methylation,

ubiquitination and sumoylation. In response to a particular

signal, modulation of cellular proteome will be perceived as

either linear pathway or combinatorial crosstalk of PTMs in

the transduction cascades. For example, phosphorylation-

based signal, as the first wave of PTMs in response to cellu-

lar stimuli, may be converted by the crosstalk to acetylated-

based action4). Acetylation can also regulate phosphoryla-

tion.

　In addition to PTMs of transcriptional regulators, chroma-

tin accessibility can be altered by PTMs of histone tails, which

include phosphorylation, acetylation, methylation, sumoylation

and ubiquitination. Patterns of distinct histone modifications

on a given nucleosome form a histone code that permits the

assembly of different remodeling complexes and epigenetic

states5). The activity of histone modifying enzymes, such as

histone methyltransferases (HMTs) and histone demethylases

(HDMTs), is also influenced in hypoxia by changes in the

expression of their coding genes and PTMs. Hypoxia in-

creases G9a HMT levels and activity, targeting histones and

non-histone proteins6). Among other HMTs that are known

to be hypoxia-inducible are Suv39h1, Suv39h2 and PRMT27).

Jumonji C (JmjC) domain-containing HDMTs require oxy-

gen for enzymatic activity. Moreover, the majority of these

enzymes are hypoxia inducible, and some of them are in-
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duced in a HIF-1-dependent manner7, 8). Sequencing of pro-

tein-coding genes in hypoxic renal carcinomas identified so-

matic truncating mutations in SETD2 histone H3K36 methyl-

transferase and JARID1C histone H3K4 demethylase9).

Among the only few studies on changes in histone methyla-

tion in hypoxia, our group observed changes in repressive

histone and DNA methylation on hypoxia-inhibited MCP-1

gene regulatory region10). The existence of histone PTM code

have lead to a debate about the existence of a PTM code

regulating non-histone proteins, at least in case of some tran-

scription factors11). PTMs of transcription factors program their

transcriptional activity and can even regulate their ability to

function as either an activator or repressor of gene expres-

sion.

　While there is an abundance of literature on the role of

protein PTMs in general and in hypoxia adaptive responses,

it is understandable that it will be impossible to give the full

overview of all the modifications of transcriptional regulators

in the format of single review paper. A number of compre-

hensive reviews on the hypoxia-induced changes in histone

modifications and chromatin structure have been published

in the last years7, 8, 12). Hypoxia responsive transcription fac-

tors and the principals of their regulation in hypoxic environ-

ment have been also reviewed recently1, 3). Keeping this in

mind, I will focus primarily on the aspects of post-transla-

tional phosphorylation and acetylation of non-histone proteins

in transcriptional responses to hypoxia, in particular, the re-

cent advances made in the understanding of the role and

regulation of phosphatases and deacetylases. Among the

majority of hypoxia responsive transcription factors, this re-

view will describe in details only PTMs of HIF and NF-κB,

reflecting their important role in hypoxic inflammation. The

role of PTMs in cancers and other pathologies with hypoxic

component will be also highlighted.

Hypoxia and Phosphoproteome
　Protein phosphorylation, which is the most widely studied

PTM, dominates the number of experimentally observed

PTMs as curated from Swiss-Prot proteome database13). It

is thought that almost one third of the cellular proteins are

phosphorylated. Recently, the emergence of technologies in-

volving high-throughput, system-wide experiments allowed

identification and quantification of the global in vivo

phosphoproteome14). Interestingly, individual phospho-sites

on the proteins containing multiple phosphorylation sites are

regulated with different kinetics, suggesting that they serve

as integrating platforms for a variety of incoming signals.

Distribution of identified phospho-amino acids determined

the low abundance of tyrosine phosphorylation － 1.8% in

HeLa and 2.9% in human embryonic stem cells HUES9 －

compared to serine and threonine phosphorylation14, 15). Turn-

over in tyrosine phosphorylation occurs faster and from a

lower basal level compared to serine/threonine phosphory-

lation. In addition to protein kinase cascades, numerous

phosphorylation sites were identified on transcription factors

and other regulatory proteins, suggesting the important role

of phosphorylation in coordinating transcription program in

response to stressors and differentiation factors14, 15). To the

author’s knowledge, the only global study of phosphoryla-

tion under hypoxic conditions was performed on newborn

red blood cells targeting only tyrosine phosphorylated soluble

proteins16).

1)Regulation of kinases and phosphatases in hypoxia

　Addition or removal of a phosphate is regulated by oppos-

ing activities of protein kinases (PK) or protein phosphatases

(PP) (Fig.2A). Our recent transcriptome analysis of hypoxia

primary response genes (1h of exposure) revealed that, al-

though genes related to protein serine/threonine kinase ac-

tivity and signaling pathway were almost equally represented

among hypoxia down-regulated and up-regulated genes, a

majority of protein tyrosine kinase activity related genes were

presented among hypoxia down-regulated genes (the Gene

Expression Omnibus (GEO) database, accession number

GSE41023; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE41023). Certain types of protein tyrosine phos-

phatases, such as protein tyrosine phosphatases (PTP), re-

ceptor type, D, G and K (PTPRD, PTPRG, PTPRK), were

presented in hypoxia up-regulated gene group. Previously,

hypoxic increase in expression of PTP, receptor type, Z

polypeptide 1 (PTPRZ1), which is over-expressed in a num-

ber of tumors, including glioblastoma, was shown to be me-

diated by HIF-2 and ELK1 binding to its promoter region17).

Among other protein phosphatases that are induced by

hypoxia are PP2A and PP1 nuclear targeting subunit

(PNUTS)18, 19). The hypoxic induction of PP2A enhances glio-

blastoma cell survival19) and associates with diastolic dys-

function observed in alveolar hypoxia20).

　In our previous work, we found that hypoxia induces

activity of protein kinase CK2 and described different roles

of catalytic α and regulatory β subunits of CK221). While

CK2β subunits were retained in the cytoplasm upon hy-
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Fig.2 Example of post-translational modifications of proteins
(A) Reversible phosphorylation of proteins is maintained by opposing

activities of protein kinases and protein phosphatases. Proteins can

be phosphorylated on serine, threonine and tyrosine amino acid side

chains. (B, C) Reversible acetylation of proteins. HATs transfer acetyl-

groups from acetyl-CoA onto lysines of protein substrates. HDACs

reverse the process by protein deacetylation (B). Sirtuins remove acetyl

groups in a reaction that requires NAD+ as the cofactor (C). Letters P

and Ac refer to phosphorylation and acetylation, respectively. CoA,

coenzyme A; HAT, histone acetyltransferase; HDAC, histone

deacetylases; Lys, lysine residue.

poxic treatment, CK2α subunits shuttled to the nucleus,

where transcriptional regulators are predominantly localized.

CK2 is an important regulator of HIF-1 transcriptional activity

via the post-translational phosphorylation of its specific E3-

ubiquitin ligase pVHL 22).

　Comprehensive studies of the mitogen-activated protein

kinase (MAPK) activation in hypoxic cells and animal hypoxia

models are actively performed starting from more then 10

years ago and continuing up to the present23, 24) All three

MAPK families － the extracellular signal-regulated protein

kinase (ERK), also known as p44 and p42, the c-Jun N-

terminal kinase or stress-activated protein kinase (JNK/

SAPK) and p38 family － are known to be activated by hy-

poxia in cell specific manner25, 26). MAPK play key roles in a

wide range of hypoxia-related physiological processes and

human diseases, including embryogenesis, obesity, is-

chemia, rheumatoid arthritis and cancer27, 28). Duration and

magnitude of MAPK activation plays a major role in deter-

mining the biological outcome of signaling. Although it has

been known for many years that mitogen-activated kinase

phosphatases (MKP), a distinct subfamily within a larger

group of dual-specificity protein phosphatases (DUSP), are

a key element of controlling MAPKs, their role in hypoxia

responses started being appreciated only recently27). Induc-

ible nuclear phosphatase DUSP1/MKP-1 is transcriptionally

induced by hypoxia and negatively regulates HIF-1α sub-

unit phosphorylation and interaction with p300 co-activator,

thus controlling excessive activation of HIF29). DUSP1 is also

a key regulator of vascular densities through the regulation

of VEGF expression in hypoxic lung30). Transcription of

nuclear MAPK phosphatase DUSP2 is inhibited while tran-

scription of cytoplasmic DUSP6/MKP-3 is increased in hy-

poxic cells in a HIF-1-dependent manner31-33). Among down-

stream effects of hypoxic suppression of DUSP2 are ERK-

dependent COX-2 overexpression in endometriosis31) and

increase in chemoresistancy and malignancy in human can-

cer cells32). In our microarray transcriptome analysis we ob-

served hypoxic transcriptional down-regulation of DUSP8

(GEO database, GSE41023). Physiological significance of

such effect, however, requires further investigation.

2)Phosphorylation of hypoxia responsive transcription

factors

　Activation of hypoxia responsive transcription factors is

also a subject of regulation by phosphorylation. HIF-1, a major

oxygen sensing transcription factor, is a phosphorylated pro-

tein and its activation depends on several kinase pathways

(Fig.3). Activation of both Akt and p38 kinases is involved in

hypoxic stabilization and nuclear translocation of HIF-1α34).

HIF-1α can be directly phosphorylated on Ser641 and

Ser643 residues by p42/p44 MAPK increasing thus its

nuclear accumulation and transcriptional activity35). Raf/MEK/

MAPK pathway upregulates the transactivation of HIF-1α

through direct phosphorylation of its regulatory/inhibitory

domain36). Casein kinase 1 (CK1)-dependent phosphoryla-

tion of HIF-1α at Ser247 residue impairs its association with
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Fig.3 Domain structure and

structural location of the

post-translational modifi-

cations of HIF-1α
Basic structure of the human HIF-1α
protein includes: bHLH － basic

helix-loop-helix domain involved in

DNA binding; PAS1 and PAS2 －
Per-Arnt-Sim homology domains 1

and 2 required for heterodimeriza-

tion with HIF-1β/ARNT; ODD －
oxygen-dependent degradation domain that mediates oxygen-regulated stability; NTAD and CTAD － N- and C-terminal transactivation domains

required for oxygen-dependent transcriptional activation. Black triangles indicate positions of domains within HIF-1α protein according to the

UniProt database, accession number Q16665. Kinases: CK1, casein kinase 1; GSK3, glycogen synthase kinase 3; PLK3, polo-like kinase; ERK,

extracellular signal-regulated protein kinase. Letters P and A refer to phosphorylation and acetylation, respectively.

SRNT, thereby diminishing its transcriptional activity37). Gly-

cogen synthase kinase 3 (GSK3), a downstream target of

Akt, directly phosphorylates the HIF-1α oxygen-dependent

degradation domain at Ser551, Thr555 and Ser589 residues,

and this mediates HIF-1α proteasomal degradation in a VHL-

dependent manner38). HIF-1α phosphorylation by polo-like

kinase 3 (PLK3) occurs on residues Ser576 and Ser657 and

is important for regulating its stability39). Activation of PI3K/

Act/HIF-1 pathway contributes to hypoxia-induced epithelial-

mesenchymal transition in fibroblast-like synoviocytes of rheu-

matoid arthritis and in chemoresistance in hepatocellular

carcinoma40, 41).

　Hypoxic activation of NF-κB is mediated by phosphoryla-

tion cascade (Fig.4). In response to hypoxia, IκB kinase (IKK)

is induced through a calcium/calmodulin-dependent kinase

2 (CaMK2) in a process dependent on IKK kinase TAK142).

Unlike for activation by inflammatory inducers of NF-κB, TAK1-

associated proteins TAB1 and TAB2 were not essential for

this activation. Activation of IKK leads to phosphorylation of

IκB at Tyr42 residue43) and release of p65 from IκBα with-

out its degradation42). This pathway differs from canonical

proinflammatory pathway, which mediates NF-κB activation

through Ser32 and Ser36 phosphorylation of IκBα with sub-

sequent proteosomal degradation. Among seven reported

putative sites of p65 phosphorylation, only Ser276 was re-

ported to be phosphorylated under hypoxic condition via the

HIF-1 and ERK1/2 pathway44).

Hypoxia and Acetylome
　Although acetylation has been first discovered and best

characterized for histones, comprehensive acetylome study

revealed the remarkably ubiquitous and conserved nature

of protein acetylation45). Acetylated proteins are involved in

diverse biological processes such as mRNA processing,

chromatin remodeling and regulation of transcription, nuclear

transport, cell cycle etc.45). Acetylation regulates activity and

localization of other posttranslational modifiers. Multiple

acetylation sites are present on protein kinases, acetyl-

transferases and deacetylases, methyltransferases and

demethylases, ubiquitin ligases and deubiquitinases45). Un-

like phosphorylation, which mainly occurs in unstructured

regions of proteins, such as hinges and loops46), acetylation

sites are frequently located in regions with ordered second-

ary structure45). In contrast to phosphorylation, no acetyla-

tion cascades have been identified yet47).

　Adaptive responses to reduced O2 availability activate

metabolic reprogramming, including HIF-1-mediated tran-

scriptional changes, to promote a switch from mitochondrial

oxidative phosphorylation to glycolitic metabolism48). Indi-

vidual reports and global analysis of acetylome indicate an

extensive role of acetylation in regulation of cellular energy

metabolism. Almost every enzyme in glycolysis, gluconeo-

genesis, the tricaboxylic acid cycle, fatty acid metabolism,

and glycogen metabolism was found to be acetylated in hu-

man liver tissue49). Pyruvate kinase (PK) is a key glycolitic

enzyme which catalyzes a rate-limiting step of glycolysis. Its

M2 isoform (PKM2) is highly expressed in cells with high-rate

nucleic acid synthesis, such as embryonic and adult stem cells,

and re-expressed in cancer cells during tumorigenesis48).

PKM2 is a direct HIF-1 target gene which participates in a

positive feedback loop by interacting directly with HIF-1α

subunit to enhance its binding to p300 and further promote
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glycolysis and tumor angiogenesis50). PKM2 enzymatic ac-

tivity is negatively regulated by lysine 305 acetylation51). Lysine

acetylation is an abundant PTM in the mitochondrion that

affects more than 20% of mitochondrial proteins, most of

which are involved in energy metabolism and oxidative

phosphorylation52). Deacetylation of mitochondrial proteins

of the electron transport chain primes mitochondria for stress

resistance to ischemia53).

1)Regulation of histone acetyltransferases (HATs) and

histone deacetylases (HDACs) in hypoxia

　Reversible lysine acetylation is regulated by the counter-

acting activities of HATs and HDACs (Fig.2B). HATs cata-

lyze the transfer of acetyl groups from Acetyl-CoA to the lysine

residues of histone and non-histone proteins. There are three

major families of HATs that have been studied extensively:

GNATs, p300/CBP (CREB-binding protein) and MYST pro-

teins. Among over 30 HATs identified in mammals, only few

have been described to function in hypoxia-related transcrip-

tion. The most intensively studied HATs are p300 and CBP.

Increased expression of p300 mRNA and protein was ob-

served in rat hippocampus and PC12 cells under hypoxic

conditions54). Hypoxia results in increased phosphorylation

levels of p300 and CBP in oxygen-sensitive PC12 and rat

carotid body cells55). Phosphorylation is essential for

acetyltransferase activity of p300/CBP and regulates their

interaction with various transcription factors, however direct

evidence on the influence of hypoxia on the activity of HATs

has not been published yet.

　HIF-1α and HIF-2α physically interact with the CH1 do-

main of p300/CBP via their C-terminal transactivation do-

main (C-TAD)56). CBP/p300 family of coactivators and HDAC

inhibitor sensitive pathways together cooperate to mediate

greater that 90% of HIF-responsive gene transcription56). The

interaction of HIF-1 and p300/CBP is negatively regulated

by O2-dependent hydroxylation of Asp-803 in C-TAD by fac-

tor inhibiting HIF-1 (FIH-1)57). Although p300 and CBP have

a high degree of homology, each exhibit different specifici-

ties for different HIF-1 target genes58). CBP was required for

hypoxic induction of vascular endothelial growth factor

(VEGF), lactate dehydrogenase-A (LDHA) and phosphoglyc-

erate kinase (PGK), while its homolog p300 enhanced hy-

poxic induction of VEGF, but was dispensable for the induc-

tion of PGK and LDHA58). In addition to p300/CBP, the re-
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Fig.4 Mechanisms of NF-κB activation by pro-inflammatory

mediators and hypoxia
Prototypical NF-κB complex is a heterodimer of p50 and p65 subunits.

In inactive state , NF-κB is located in the cytoplasm in a complex with

IκB. The canonical pathway is induced by pro-inflammatory mediators

such as TNFα, IL-1 and LPS and involves activation of IKK complex.

This activation results in phosphorylation of the IκBα protein at Ser32

and Ser36 residues. Hypoxia induces atypical IKK-independent path-

way of NF-κB. Activation of tyrosine kinases results in the phosphoryla-

tion of IκBα at Tyr42 residue and its subsequent degradation or dissocia-

tion from NF-κB heterodimer. Modification of NF-κB subunits by acety-

lation or phosphorylation determines transcriptional activation or repres-

sion effects as well as promoter-specific actions of NF-κB. A, acetyla-

tion; IκB, inhibitory protein-κB; IKK, IκB kinase complex, consists of 2

catalytic IKKα and IKKβ subunits and regulatory IKKγ/NEMO sub-

unit. IL-1, interleukin 1; LPS, lipopolysaccharide; P, phosphorylation;

TNFα , tumour necrosis factor α.
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quirement for HAT coactivators, such as PCAF (p300/CBP-

associated factor), SPC-1 and SRC-3, has been shown for

HIF-1-dependent transcription58, 59).

　Enzymatic removal of acetyl-groups from histones and non-

histone proteins is catalyzed by HDACs (Fig.2B). HDACs

can be divided into two distinct families: the classical family,

zinc-dependent HDACs, and sirtuins, stress-responsive family

of nicotinamide adenine dinucleotide (NAD+)-dependent

HDACs. Exposure to hypoxia or serum-deprived hypoxia for

16 hr increases HDAC activity in different cell lines and in-

duces HDAC1, HDAC2 and HDAC3 mRNA and protein

expression60). Analysis of mRNA levels for HDACs 1 to 11

and co-repressors N-CoR and SMRT in human fetal lung

type II cells showed marked induction by 24 hrs hypoxia ex-

posure for all repressors analyzed61). Increased HDAC func-

tion is also prominent in in vivo hypoxic tissues. Human idio-

pathic pulmonary arterial hypertension lungs exhibited in-

creased expression of HDAC1, HDAC4 and HDAC5 proteins

and these observed changes were associated with the patho-

logical vascular remodeling62). Lungs and right ventricles from

rats exposed to chronic hypoxia exhibited a striking increase

in HDAC1 and HDAC5 expression62). Our group described

the mechanism of HDAC activation in response to hypoxia21).

We showed that hypoxia induces HDAC1 and HDAC2 activ-

ity via protein kinase CK2-dependent post-translational phos-

phorylation. Interestingly, hypoxic HDAC activation was de-

pendent on catalytic CK2α subunits and did not require

formation of CK2 heterotetrameric complex with regulatory

CK2β subunits21). CK2-induced HDAC activation then favors

tumor growth and angiogenesis by mediating pVHL down-

regulation and HIF-1α stabilization.

　Sirtuins use oxidized NAD+ as a co-substrate to transfer

the acetyl group for deacetylase enzymatic reaction (Fig.2C).

Seven sirtuin paralogs (Sirt1-7) have been identified in

mammals47). Sirt1, Sirt6 and Sirt7 are nuclear proteins with

preferential distribution in the nucleoplasm, in heterochro-

matin and in nucleoli, respectively. Sirt2 is predominantly

cytoplasmic. Sirt3, Sirt4 and Sirt5 are mitochondrial proteins

and regulators of transcription of mitochondrial genome, of

mitochondrial processes and metabolism. Sirtuins’activity is

regulated in several ways, however their specific regulation

in hypoxic and ischemic conditions is still unclear. Sirtuins

are activated in response to a rise in the cellular NAD+/NADH

ratio and, therefore, act as sensors of cellular metabolic and

redox state63). Hypoxia was reported to reduce NAD+ to NADH

and subsequently decrease Sirt1 activity and mRNA levels64).

Nevertheless, Sirt1 depletion impaired the ability of endot-

helial cells to form new vessels in response to ischemic stress,

suggesting that its activity is maintained under such

conditions65). It is possible that NAD+ levels are kept higher in

specific subcellular compartments of hypoxic cell, where the

activity of Sirt1 is sufficient to interact with its substrates63).

Other group demonstrated that, upon hypoxia exposure, HIF-

1 and HIF-2 are recruited to the proximal Sirt1 promoter and

subsequently increase Sirt1 mRNA and protein expression66).

Sirt1 activity is also regulated by PTMs. CK2-mediated phos-

phorylation of Sirt1 increases its substrate-binding affinity

and its deacetylase activity67). Increase in CK2 enzymatic

activity in hypoxic cells was demonstrated previously21).

2)Acetylation of hypoxia responsive transcription factors

　Transcription factors associate with both HATs and HDACs

and reversible acetylation of transcription factors itself has

been described. Although HDACs are generally found in the

transcriptional co-repressor complexes, HDACs are also

associated with the activation of HIF-responsive gene

expression56). HDAC inhibitors, such as trichostatin A, in-

duce proteasomal degradation of HIF-1α via a VHL and

ubiquitin-independent mechanism and repress HIF-1α tran-

scriptional activity68-70). In agreement with the observations

on the effect of HDAC inhibitors, various HDAC isoforms

have been described to associate with HIF-1 transcriptional

activity. HDAC1, HDAC2, HDAC3, HDAC4, and HDAC6 are

associated with increased HIF-1α stability, while HDAC4,

HDAC5, HDAC6, HDAC7 result in increased transcriptional

activity of HIF-1 via interactions with inhibitory domain, as

was described by our previous review and later report71, 72).

　Transcriptional activity and stability of HIF-1α and HIF-2α

proteins can be regulated by acetylation of various lysine

residues (Fig.3). Acetylation of the first five N-terminal

lysines of HIF-1α protein (K10, K11, K12, K19, and K21)

disrupts HIF-1α protein level and HIF-1 activity and is spe-

cifically regulated by HDAC473). Two lysine residues K532

and K389 within the HIF-1α protein have been identified as

acetylation targets of PCAF59). Functionally, the acetylation

of K532 by arrest defective protein 1 (ARD1) has been linked

to HIF transcriptional activity and protein stability74). How-

ever, several conflicting reports questioned whether this resi-

due is an actual target of ARD175). p300 specifically acety-

lates HIF-1α at K709, which increases protein stability and

HIF-1 activity76). This acetylation can be opposed by HDAC1,

but not by HDAC376).
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　Sirtuins Sirt1, Sirt3 and Sirt6 are also regulators of HIF

protein acetylation and transcriptional activity. Sirt1 binds to

HIF-1α and deacetylates it at K674 residue, which is acety-

lated by PCAF64). Such deacetylation inhibits HIF-1α by block-

ing p300 recruitment and represses HIF-1 target genes. HIF-

2α is also deacetylated by Sirt1 during hypoxia at three lysine

residues (K385, K685, and K741) within the carboxy

terminus77). In contrast to HIF-1α, HIF-2α transcriptional

activity is enhanced by deacetylation leading to activation of

HIF-2α target genes such as VEGFA, superoxide dismutase

2 (SOD2) and erythropoietin (Epo)77). Studies in hypoxia pre-

conditioning have reported that Sirt1 down-regulates pro-

tein expression of prolyl hydroxylases 2 (PHD2), which leads

to the stabilization of HIF-1α78). Another sirtuin, Sirt6, be-

haves as a co-repressor of HIF-1 by deacetylating histone

H3 lysine 9 on HIF-1-responsive glycolytic gene promoters79).

Loss of Sirt6 results in elevated expression of glycolytic genes,

increased glucose consumption and glycolysis, and de-

creased mitochondrial respiration79). Switching from the early

to the late acute inflammatory responses is supported by

metabolic bioenergy switch from increased glycolysis to in-

creased fatty acid oxidation in a process that requires activa-

tion of Sirt1 and Sirt6 and subsequent reduction of HIF-1

activity80). The mitochondrial deacetylase Sirt3 was reported

to be a tumor-suppressor gene81). Recently, two indepen-

dent reports linked anticancer properties of Sirt3 with HIF-1

function82, 83). Sirt3 inhibits ROS production, thereby promot-

ing activation of PHDs and destabilization of HIF-1α. Sirt3

deletion appears to promote HIF-1 activation even under

normoxic conditions and increases expression of HIF-1 tar-

get genes82, 83).

　Biological functions of NF-κB are also regulated by direct

acetylation of several NF-κB subunits: p52 and its precursor

p100, p50 and p65. Acetylation of the p50 subunit of the

classical p65/p50 NF-κB heterodimer at K431, K440 and

K441 residues enhances its DNA binding activity and co-

recruitment of p300 co-activator84, 85). Five acetylation sites

have been identified within p65 － lysines K122/K123, K218,

K221, K310, K314/K31585). Modification of these sites modu-

lates distinct biological responses. Acetylation at K221 en-

hances DNA binding and, together with K218 acetylation

impairs assembly with IκBα86). Acetylation of K310 is re-

quired for full transcriptional activity of NF-κB86). In contrast,

K122 and K123 acetylation reduces its ability to bind DNA

and facilitates its IκBα-mediated export from the nucleus87).

The functional relevance of K314 and K315 modifications is

not clear yet, however recent observation suggests that acety-

lation of K314 and possibly K315 might contribute to the re-

pression of certain genes88). The p65 is acetylated by p300

on all lysine residue described above85). Additionally, dual

lysine residues K122/K123 can be targeted for acetylation

by PCAF87). Acetylated p65 is subsequently deacetylated

through a specific interaction with HDAC387, 89). Sirtuins Sirt1

and Sirt2 physically interact with p65 and inhibit expression

of a subset of p65 acetylation-dependent target genes by

deacetylating p65 at K31090, 91). Although hypoxia modulates

activity of NF-κB-targeting HATs and HDACs, the impact of

hypoxia on NF-κB acetylation is not completely understood.

Very limited evidences are mainly referred to ischemia or

ischemia-reperfusion. However, although ischemic condition

contains hypoxic component, it includes, in addition, other

metabolic abnormalities, such as glucose deprivation and

defective removal of waste products. Study of ischemia-

reperfusion injury on Langendorff isolated hearts revealed

that acetylation of p50 at lysine residues is essential for HDAC

inhibitor-induced cardioprotection92). It was shown that acti-

vated NF-κB displayed a high level of p65 K310 acetylation

in vivo in mice subjected to lethal middle cerebral artery oc-

clusion and in vitro in primary cortical neurons exposed to

lethal oxygen-glucose deprivation93).

Conclusions and perspectives
　Recent studies clearly demonstrate that hypoxia affects

numerous signaling pathways related to inflammatory re-

sponses and cancerogenesis. Moreover, the hypoxic mi-

croenvironment in various cancers is thought to increase

resistance to chemo- and radio-therapies. Expression of

hypoxia-responsive genes is subject to tight regulation in-

volving PTMs of both upstream factors and of histone tails

surrounding regulatory and coding regions of gene targets.

　Creation of Swiss-Prot protein database led to a striking

discovery that the number of PTMs far exceeded the num-

ber of mutations identified13). Much remains to be learned

about the role of disregulation of PTMs in etiogenesis and

progression of a variety of diseases, including inflammatory

conditions and different types of cancers. Analysis of the

complete protein kinase gene family detected only a very

few or no somatic mutations in primary cancers, indicating

that changes in enzymatic activity, which are primarily regu-

lated by PTMs, are more often the cause of disease

progression94). Certain inhibitors of PTMs have been already

introduced into clinical oncology. The effectiveness of inhibi-
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tors of HDACs and specific tyrosine kinases has been proven

in the treatment of various malignancies, such as acute and

chronic myeloid leukemias, B- and T-cell lymphomas,

colorectal and pancreatic cancers and many others95, 96).

Progress in understanding the function of broader spectrum

of regulators of PTMs has provided insights into which pro-

tein tyrosine phosphatases and protein kinase CK2 might be

novel potential therapeutic targets in human cancer97, 98)

Therefore, considerable interest in understanding how PTMs

signaling pathways enhance tumor cell survival under hy-

poxia might lead to the development of more effective alter-

native therapy to target these resistant cell subpopulations.

　In addition, inhibitors of PTMs are valuable tools in phar-

macological studies on inflammation. Anti-inflammatory prop-

erties of HDAC inhibitors, such as reduction in cytokine pro-

duction, are being studied in models of a broad range of dis-

eases not related to cancer99). Distinct from their use in on-

cology, reduction of inflammation requires doses consider-

ably lower than the higher concentrations of HDAC inhibitors

that are required for tumor cells death. The potential of HDAC

inhibition has been proposed as therapeutic strategy in pul-

monary arterial hypertension62).

　A disbalance between specific kinase-mediated phospho-

rylation and corresponding phosphatases is considered to

be involved in the etiology of chronic inflammatory and im-

munologic diseases such as allergy and rheumatoid arthritis;

neural diseases such as Alzheimer and Parkinson disease;

and diabetes mellitus100, 101). Since the first kinase inhibitor,

imatilib mesilate (Novartis), came to market in 2001, the re-

search moved toward the opportunities and challenges of

kinase and phosphatase inhibitors as a promising therapeu-

tic approach in inflammatory disease100, 101). Even though in-

hibitors specific for the individual enzyme molecules in-

volved in PTMs are difficult to develop, studies in cell cul-

tures and animal models have revealed a promising thera-

peutic option and great clinical impact.
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