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   It is now widely accept that stem cell-like cancer cells, also known as cancer initiating cells
(CIC), cancer stem cells or cancer propagating cells exist, in various types of cancers, including
malignant glioma. Because it is likely that CICs proliferate indefinitely, express characteristics of
tissue-specific stem cells, form tumor and are resistant to chemo- and radio-therapy, it is impor-
tant to establish their purification methods, characterize them and find therapeutic ways. In this
review, I will summarize recent progress about glioma initiating cell that is one of best CIC
models.
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Introduction
　During the last decades, tissue-specific stem cells (TSCs)

have been identified in almost all tissues. These cells self-

renew and continuously generate the residential differenti-

ated cells that are responsible for tissue functions and

homeostasis1). Neural stem cells (NSCs) in the central ner-

vous system (CNS), for example, self-renew and give rise

to neurons, astrocytes, and oligodendrocytes throughout

life2).

　The discovery of TSCs made a paradigm shift in cancer

research. The use of markers for stem cells and differenti-

ated cells, for instance, revealed that malignant tumors

contain both cells that express TSC markers, such as

Nestin, Sox2, and Oct4, and cells that express differentia-

tion markers3-6), suggesting that these tumors contain stem

cell-like cancer cells (also known as cancer stem cells,

cancer initiating cells (CICs) or cancer propagating cells).

　This idea was also supported by the other findings. For

instance, cancer cells as well as TSCs maintain telomerase

activity for self-renewal and express various types of detoxi-

fying mechanism that contribute to the drug resistance in

cancers, including ATP-binding cassette (ABC) transport-

ers7-10) and Aldehyde dehydrogenase (ALDH)11), and DNA

repair factors that contribute to radioresistance, including

Bmi112).

　It was demonstrated that CIC-enriched populations can

be obtained from cancers and cancer cell lines by exploit-

ing TSC features, including cell surface proteins, CD133,
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CD44, and CD15, activity of specific enzymes such as side

population (SP) and ALDH, sphere formation assay, or a

combination of these features3-5). However, there are op-

posite evidences showing that such marker-negative cells

from tumors and cancer cell lines can also form tumors

when transplanted in vivo13, 14). Therefore, it still remains

uncertain whether the existing isolation methods can iden-

tify bona fide CICs or non-CIC can obtain the characteris-

tics of CIC in the special condition.

　Gliomas are the most common brain tumors with char-

acteristics of normal glial cells, astrocytes and oligoden-

drocytes, and classified into four grades (WHO grade I-IV)

by pathological features. Approximately 50% of Glioma is

glioblastoma multiforme (GBM), most malignant glioma

(WHO grade IV), with a median survival of one year. De-

spite tremendous efforts to cure GBM, survival time of the

patients has not changed over decades. The finding of GBM

initiating cells (GICs), which express NSC markers, includ-

ing Nestin and CD133, and are highly resistant to radio-

and chemo-therapies, brought a strong impact to GBM re-

search. Indeed, it has been demonstrated that the inhibi-

tion of NSC-maintaining genes, such as Sox2 and hypoxia

inducible factors (HIFs), prevents GIC tumorigenesis15, 16).

　Among various types of CICs, it is sure that GIC is one

of best models to analyse the fundamental mechanism in

CICs, because the experimental procedures for neural lin-

eage cells and GBM are well established. Moreover, it was

revealed that most of mutations in GBM assemble in three

signaling pathways, p53, retinoblastoma (Rb) and recep-

tor tyrosine kinase pathway17, 18), all of which are commonly

mutated in other types of cancer. Thus, it is likely that both

the experimental procedures and results of GIC research

are widely applied to other CIC research. In this review, I

will summarize GIC markers (Fig.1) and discuss about their

potency as therapeutic target.

Cell surface markers for GIC
   Singh et al. has reported their success in separating brain

CICs from human medulloblastoma and GBM using an anti-

CD133 antibody that recognizes a variety of different stem

cells. Here, as few as one hundred CD133+ GBM cells

formed tumors in NOD-SCID brain19). It was also shown

that CD133 induces the expression of an ABC transporter,

P-glycoprotein/ABCB120). However, since there is evident

that CD133- GBM cells is also tumorigenic and the expres-

sion is induced in hypoxia21), it is still controversial whether

CD133 is a bona fide marker for GICs.

　CD15, also known as Stage-Specific Embryonic Anti-

gen 1 (SSEA1) or Lewis X (LeX), was shown to be a gen-

eral CIC marker on GBM22). Since CD15 as well as CD133

is also expressed on NSC and their progenitor cells, it is

unlikely that it is a therapeutic target.

　It was also shown that a cell surface chemokine recep-

tor CXCR4, which mediates proliferation and invasion, is

expressed on GICs and CXCL12, the CXCR4 ligand, acti-

vates GIC proliferation23). Moreover, it was demonstrated

Fig.1 Factors involved in the char-

acterization and mainte-

nance of GIC
GICs as well as TSCs are thought to

exist in the special microenvironment

“Niche”. GICs are anchored in the

Niche by adhesion molecules, such as

Cadherin and Integrins, and maintained

by Niche factors, including Notch, Wnt,

Hh, PDGF and EGF. GICs also express

various types of factors, such as VEGF,

which make and maintain “Niche”.
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that CXCR4+ cells from human glioma specimens form

tumorspheres in culture and form xenograft tumors,

whereas CXCR4- cells did not so24). Together, these find-

ings suggest that CXCR4 is a marker for GICs.

　Rich and his colleagues have shown that integrin α6, a

member of integrin family of extracellular matrix receptors,

as a new marker for GICs: they succeeded to enrich GICs

using anti-integrin α6 antibody and demonstrated that

knockdown of integrin α6 can inhibit GIC tumorigenesis

in vivo25).

　Cadherins are also involved in GIC tumorigenesis and

invasion via the E- to N-cadherin switch. It is of interest

that co-localization of N-cadherin and integrin α6 induces

activation of extracellular signal-regulated kinase that regu-

lates proliferation and invasion26). It was also shown that

interaction of connexin 43 with E-cadherin decreases GIC

invasiveness27).

    It was demonstrated that A2B5, which is a golden marker

for oligodendrocyte precursor cells (OPCs), can be used

to separate human GIC28, 29), suggesting the possibilities

that GICs originate from OPCs or acquire OPC character-

istics in their transformation. In fact, there is increasing

evidence that OPC is a cell-of-origin for GICs30, 31).

Signaling pathways in GIC
   It is well known that loss of p53 function promotes the

accelerated cell proliferation and malignant transforma-

tion32). Indeed, over 65% of human glioma was shown to

contain TP53 gene deletion and mutation33). Moreover, ad-

ditional evidences indicated that other p53 signaling fac-

tors, including Murin-double-minute 2 (MDM2) that binds

to, destabilizes, and inactivates p53, and the Chromodomain

helicase DNA binding domain 5 (Chd5) that regulates cell

proliferation, cellular senescence, apoptosis, and tumori-

genesis, are also mutated in malignant glioma32-35). In total,

it was revealed that about 90% of human glioma have

mutations in p53 signaling pathway17, 18) (Fig.2). Although

the effector molecule of p53 pathway is the p21 cyclin-

dependent kinase (Cdk) inhibitor that regulates progres-

sion of cells through the G1 cell-cycle phase, it has not

been demonstrated that p21 gene itself is an oncogenic

target in human cancers.

　Retinoblastoma (Rb) is another essential tumor suppres-

sor protein that regulates the G1 checkpoint36). Hypophos-

phorylated form of Rb sequesters E2F transcription factor

and arrest cells at the G1 checkpoint. Once Rb is hyper-

phosphorylated by Cyclin D and Cdk4/6 complex, phos-

phorylated Rb releases E2F, E2F induces the expression

of cell cycle regulators, and then the cells enter S phase.

In contrast, p16/Ink4a Cdk inhibitor binds to Cdk4/6, pre-

vents the complex formation of Cdk4/6 and Cyclin D, and

maintains Rb hypophosphorylation. Mutations in Rb path-

way have been frequently identified in many types of ma-

lignant tumors. For example, mutations in Rb signaling

pathway, including Cdk4 amplification and p16/Ink4a de-

letion, was found in about 80% of GBM17, 18, 37).

　Signaling pathways (Ras/Raf/MAPK and PTEN/AKT

pathways) of receptor tyrosine kinases (RTKs), including

the Platelet derived growth factor receptor, the Epidermal

growth factor receptor, the Fibroblast growth factor recep-

tor, the Insuline-like growth factor receptor and the Leuke-

mia inhibitory factor receptor that play a role for the main-

tenance of TSCs and amplifying precursor cells, are fre-

quently mutated in tumors38). For instance, activation of RTK

pathway was found in about 90% of GBM17, 18). In particu-

lar, it has been shown that small GTP protein Ras, one of

essential oncogenes, and its negative regulator, type1

Neurofibromas gene (NF1), are mutated in many kinds of

human cancers and that the phosphatase tensin homolog

(PTEN), which inhibits function of the phosphoinositol tri-

Fig.2 Signaling pathway involved in GICs
Various kinds of growth factors, including EGF, PDGF and LIF, acti-

vate PI3K/AKT, Ras/Raf/MAPK, STAT3 and other pathways, which

regulate cell cycle, apoptosis, differentiation, and cell proliferation.
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phosphate kinase (PI3K) that activates Akt, is frequently

inactivated in malignant tumors39).

　Notch receptors (Notch1-4 in mammals) are involved in

a number of biological functions, including TSC mainte-

nance and tumorigenesis40, 41). Following the activation of

Notch by ligands (Delta-like-ligand (Dll) 1, 3, and 4, and

Jagged 1 and 2), the receptor is cleaved by metalloproteases

and γ-secretase complex, releasing the Notch intracellu-

lar domain (NICD). The NICD then activates a number of

target genes, including the differentiation inhibitors, hairy

and enhancer-of-split (Hes), and cell cycle regulator, Cyclin

D1. In gliomagenesis, it has been demonstrated that Notch

pathway is crucial for the maintenance of GICs and their

tumorigenesis42, 43). These findings suggest that Notch sig-

naling inhibitors can be used for GBM therapy. In fact, a

number of Notch inhibitors, including RO4929097, MRK003

and MK0752, are now under (pre-) clinical trial.

　The Wnt family of secreted proteins regulate diverse

developmental processes, including cell proliferation, fate

decisions and tumorigenesis44-46). When Wnt (20 members

in mammals) binds to the receptor (called Frizzled, Frz),

activated Frz inhibits degradation of β-catenin (β-cat),

which is a key transcription factor in the canonical signal-

ing, and induces the expression of target genes, including

c-myc and cyclin D1. It has been shown that Wnt1 and 3a,

Frz5 and 8, and β -cat are expressed in the developing

ventricular and subventricular zones (VZ/SVZ)47-49), where

NSCs exist, and that inactivation of Wnt1, Wnt3a, or β-cat

causes developmental brain defects46, 50). Many lines of

evidences suggest that Wnt signaling pathway is activated

in GBM. For instance, it was shown that Acaete-scute ho-

molog 1, which is an essential transcription factor for the

maintenance and tumorigenesis of GICs, activates Wnt

signaling by repressing a Wnt signal inhibitor Dickkopf151)

and that Pleiomorphic adenoma gene like 2, a transcrip-

tion regulator, induces self-renewal of GICs and inhibits

their differentiation by activating Wnt/β-cat signaling52).

Thus, hyper-activation of Wnt signaling is likely crucial for

GBM development.

　Secreted protein Hedgehog (3 members, Sonic, Desert,

and Indian, in mammals) is also involved in TSC prolifera-

tion and tumorigenesis53, 54). Binding of hedgehog (Hh) to

the transmembrane receptor Patched1 activates the zinc-

finger transcription factor Gli (Gli1-3) and induces the ex-

pression of target genes, including wnt, insulin-growth fac-

tor 2 (igf2), and pdgf receptor a. There are many evidences

showing that Hh signaling pathway is essential for NSC

maintenance and gliomagenesis55, 56): All of Hh signaling

components, Gli, Ptc1, and Smo, are expressed in the VZ/

SVZ and enforced expression of dominant-negative form

of Gli2 (dnGli2), which blocks functions of all Gli members,

inhibited proliferation of NSCs and expression of NSC

markers, including Sox2 and Prominin157). In gliomagenesis,

it was shown that Gli1 is highly activated in GBM as well

as medulloblastoma and primitive neuroectodermal

tumors58). It was shown that Cyclopamine, one of specific

inhibitors of Hh signal, blocks the growth of several pri-

mary gliomas, medulloblastomas, glioma cell lines, and

human GICs59-61). Moreover, it was demonstrated that

overexpression of dnGli2 prevents tumorigenesis of hu-

man GICs61). Taken together, these findings suggest that

Hh signaling plays an important role in GICs.

　Signal transducer and activator of transcription 3

(STAT3), a member of STAT transcription factors, is well-

known to be involved in the tumorigenesis of various types

of cancer as well as the maintenance of embryonic stem

cells and NSCs62-64). Activation of STAT3 signaling path-

way is also found in malignant glioma and is associated

with poor prognosis65). It was shown that inhibition of STAT3

not only induces the expression of differentiation markers

in GICs but also prevents their proliferation and tumori-

genesis66-68). Thus, STAT3 is likely a crucial target for

therapy.

   Transforming Growth Factor-beta (TGF-β) is a well-

known tumor suppressor, however, there are opposite evi-

dences that it plays an essential role in GBM. For instance,

TGF-β was shown to induce proliferation of GICs through

the activation of PDGF-B and LIF signaling pathway69, 70). It

was also demonstrated that TGF-β activates Sox4-Sox2

axis and Bmi1, both of which are essential regulators in

TSC, to maintain GIC tumorigenesis71, 72). Together with

another evidence that TGF-β is an inducer of regulatory T

cell that inhibits the activation of immune system, these

suggest that TGF-β is a central player for gliomagenesis.

Resistance of GIC to cancer therapies
   Cancer cells as well as many kinds of TSCs express a

number of ABC transporters. Breast cancer resistance pro-

tein 1, also known as ABCG2, excludes the fluorescent

dye Hoechst 33342, identifying a SP9), in which various

types of TSCs are enriched, although some research has

shown that TSCs exist in both SP and non-SP and that SP
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cells do not express stem cell markers13, 73). A number of

research groups have found that some established cancer

cell lines, which have been maintained in culture for de-

cades, and tumors, such as glioma, AML, neuroblastoma,

nasopharyngeal carcinoma, and ovarian cancer, contain a

small SP. These studies have demonstrated that SP cells

－ but not non-SP cells－ self-renew in culture, are resis-

tant to anti-cancer drugs including Mitoxantrone, and form

tumors when transplanted in vivo74). However, it has been

shown that many cancer cell lines do not contain any SP

fraction and that non-SP cells in some cancer cell lines

generate SP fraction during culture.

　ALDH is another detoxifying enzyme oxidizing intracel-

lular aldehydes to carboxylic acids and blocking alkylating

agents. Finding of the increased activation of ALDH in TSCs

made it possible to identify and purify many types of TSCs,

including hematopoietic stem cells and NSCs, using fluo-

rescent substrates of this enzyme and flow cytometry75).

ALDH activity is now used to separate many types of CICs,

including GICs, from tumors and cancer cell lines76, 77).

　Hypoxia inducible factors (HIF) are the oxygen-sensi-

tive transcription factors consisting of HIF-1 (α and β),  -2

(α and β) and -3 (α and β). Since it has been shown

that HIFs regulate many genes involving in angiogenesis,

metabolism, proliferation and survival in hypoxia, they be-

come essential targets for cancer therapy. Indeed, it has

been shown that inhibition of HIF-1α and -2α prevents

GIC tumorigenesis16).

Other characteristics
　An increasing evidence points to the fact that CICs as

well as TSCs, such as NSCs and mammary gland stem

cells, can form floating aggregates (tumor spheres) and

be enriched in the spheres when cultured in serum-free

medium with proper mitogens, such as bFGF and EGF.

However, because all of CICs in spheres are not exposed

to the mitogens, monolayer culture method might be bet-

ter to expand and characterize CICs. Indeed, Pollard et al

have demonstrated that monolayer-cultured GICs are

homogenous and can be used to identify therapeutic

targets78).

　One characteristic of malignant tumor cells is to invade

into normal tissue and to metastasize into other tissues.

Some of the infiltrating cancer cells cannot be removed by

surgical operation and causes recurrence, suggesting that

CICs retain high invasion activity. In fact, it has demon-

strated that CD133-positive cancer cells highly express

CD44 and chemokine receptor CXCR4, both of which

mediate cell migration23, 24).

　Clement et al. have demonstrated that the combination

of a distinct morphology with a very high nuclear/cytoplas-

mic ratio and intrinsic autofluorescence (520nm emission

upon laser excitation at 488nm) can be used to prepare

GICs, called FL1(+) cells that express NSC markers and

are malignant79). It is of interest to know the molecular

mechanism relating the morphology and autofluorescence

in GICs.

Conclusion
   A number of new stem cell markers and techniques have

been utilized to identify and purify CICs during last decade.

However, it is not yet known whether or not such CICs

consist of homogenous population, as such marker-nega-

tive cells as well as positive cells contain tumorigenic cells.

Therefore it is still needed to establish experimental strat-

egies, including the single cell analysis, to identify bona

fide GICs and to characterize them, leading to the discov-

ery of novel therapeutic targets and methods.
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