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   Chronic inflammation-associated kidney fibrosis leads to progressive kidney dysfunction.  Cell
sources of matrix-producing cells in diseased kidneys include activated resident stromal cells
(e.g., fibroblasts and pericytes), cells derived from epithelial-mesenchymal transition/endothe-
lial-mesenchymal transition, and infiltrating bone-marrow-derived cells (e.g., fibrocytes, T cells,
and monocytes/macrophages). Recent studies show that bone-marrow-derived cells are recruited
to diseased kidneys, interact with renal resident cells, and produce chemokines/cytokines, growth
factors, and collagens, thereby promoting and escalating chronic inflammatory processes and
eventually leading to kidney fibrosis.
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Introduction
   The number of dialysis patients due to chronic kidney

diseases (CKD) is on the rise. In addition, CKD is an inde-

pendent risk factor for cardiovascular diseases and has a

large influence on all-cause mortality. Thus, improving the

prognosis of CKD is an important issue based on medical,

social, and health economical aspects1). Kidney fibrosis is

a common process of progressive kidney diseases that lead

to renal failure, regardless of its etiologies. The histologi-

cal characteristics of kidney interstitial fibrosis include tu-



91Inflammation and Regeneration    Vol.33  No.2    MARCH  2013

Special Issue (Mini Review)　Bone-marrow-derived cells and kidney f ibrosisBone-marrow-derived cells and kidney f ibrosisBone-marrow-derived cells and kidney f ibrosisBone-marrow-derived cells and kidney f ibrosisBone-marrow-derived cells and kidney f ibrosis

bular atrophy and dilation, interstitial leukocyte infiltration,

fibroblast accumulation, and increased interstitial matrix

deposition2). Among these characteristic changes, intersti-

tial matrix deposition is key step. Cell sources of matrix-

producing cells in diseased kidneys include activated resi-

dent stromal cells (e.g., fibroblasts and pericytes), cells

derived from epithelial-mesenchymal transition (EMT), and

endothelial-mesenchymal transition (EndMT), and infiltrat-

ing bone-marrow-derived fibrocytes3-5).

  In 1994, Bucala et al. identified fibrocytes as a circulating

bone-marrow－derived CD34+ cell population of fibroblast-

like cells that infiltrate from inflammatory exudates into

subcutaneously implanted wound chambers6). Accumulat-

ing evidence proposes that fibrocytes occupy 0.1-0.5% of

peripheral blood leukocytes and that these cells are candi-

date participants in organ fibrosis in the lungs, skin, heart,

liver, and kidneys7, 8). Originally, fibrocytes were identified

by the coexpression of CD34 and type 1 collagen. In addi-

tion, fibrocytes were identified by dual positivity of CD34 or

CD45 and type 1 collagen or type 1 procollagen6, 7). A re-

cent study revealed that other marker (e.g., CD45RO, 25F9,

or S100A8/A9) can distinguish fibrocytes from monocytes/

macrophages or fibroblasts9). In this review, we focus on

the involvement of bone-marrow-derived cells and their

interaction to renal resident cells in the process of kidney

fibrosis.

Involvement of T cells and monocytes/
macrophages in kidney fibrosis
  Tapmeier et al. investigated the role of different T-cell

populations in kidney fibrosis in a mouse model of UUO

and found that CD4+ T cells are critical in the pathogenesis

of kidney fibrosis10).  Nikolic-Paterson speculated three func-

tions of T cells during kidney fibrosis: 1) T cells may oper-

ate directly on fibroblasts and pericytes to promote their

migration, proliferation, and differentiation, resulting in

myofibroblasts accumulation; 2) T cells may induce a

profibrotic phenotype in the infiltrating macrophage popu-

lation, which secretes profibrotic and pro-proliferative

cytokines and growth factors; 3) T cells may affect directly

tubular epithelial cells to induce secretion of cytokines and

growth factors that, in turn, act on fibroblasts11). However,

precise functions of T cells during kidney fibrosis are un-

clear so far.

  Recent studies show a diverse range of macrophage re-

sponses to the microenvironment, suggesting their role in

kidney injury12). Colony-stimulating factor-1 promotes re-

nal repair in mice after ischemia-reperfusion injury by re-

cruiting and resulting macrophage function13]. Thus, mac-

rophages mediate tissue repair rather than drive inflam-

mation. On the other hand, we observed that human pe-

ripheral CD14-positive monocytes/macrophages directly

make a contribution to producing type 1 collagen, which is

dependent on MCP-1/CCL2-CCR2 signaling12). Addition-

ally, the presence of MCP-1/CCL2 expression is sugges-

tive of a chronic stage of disease. Moreover, the measure-

ment of urinary MCP-1/CCL2 expression is a useful clini-

cal tool for monitoring disease activity and progression of

kidney fibrosis in inflammatory kidney diseases, including

diabetic nephropathy14-18). These findings were supported

by the fact that blockade of MCP-1/CCL2 prevents leuko-

cyte migration to the kidney, urinary protein excretion, and

TGF-β expression, thereby preventing glomerulosclero-

sis and interstitial fibrosis16, 19-21). Besides MCP-1/CCL2,

blockade of fractalkine-CX3CR1 also reduced kidney fi-

brosis, along with reduction in macrophage infiltration22, 23).

Glomerular podocytes express CCR2 receptor, suggest-

ing that MCP-1/CCL2 activation of CCR2 on podocytes

may underlie induction of MMP-12, leading to glomerular

basement membrane damage and urinary protein excre-

tion24). Furthermore, there were significant interrelation

between the numbers of CD45+/proCol1+ cells and mac-

rophages in human kidneys, as well as urinary levels of

MCP-1/CCL2, indicating the close relationship between

CD45+/proCol1+ cells and macrophages. Based on these

results, we consider that the MCP-1/CCL2-CCR2 signal-

ing recruits and activates bone-marrow－ derived cells,

especially macrophages, and mediates kidney fibrosis,

regardless renal etiologies.

Identification of cells positive for CD34
or CD45 and type 1 collagen in kidney
fibrosis
　The signification of fibrocytes in kidney fibrosis remains

to be established. Using immunostaining and flow cytometry,

we observed CD45 and type 1 collagen dual-positive

(CD45+/Col1+) cells infiltrating the kidney interstitium, es-

pecially the corticomedullary regions, in a mouse model of

progressive kidney fibrosis induced by unilateral ureteral

obstruction (UUO)25). Additionally, the number of infiltrat-

ing CD45+/Col1+ cells increased with fibrotic progression

after UUO, peaking on day 7. These findings prompted us
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next to investigate the presence of CD45 and type 1

procollagen dual-positive (CD45+/proCol1+) cells infiltrat-

ing human diseased kidneys, particularly in patients with

diabetic nephropathy. The number of infiltrating CD45+/

proCol1+ cells in the interstitium positively correlated with

the severity of interstitial fibrosis, the number of CD68-posi-

tive macrophages, and the levels of urinary monocyte

chemoattractant protein 1 (MCP-1)/chemokine (C-C motif)

ligand 2 (CCL2) in patients with CKD. On the other hand, a

negative correlation was observed between the estimated

glomerular filtration rate and 24 hour creatinine clearance.

Consistent with the reduction of disease activity after glu-

cocorticoid therapy, the number of interstitial CD45+/

proCol1+ cells and macrophages, as well as urinary MCP-

1/CCL2 levels, significantly decreased26). These findings

suggest that CD45+/proCol1+ cells could be involved in the

pathogenesis of kidney fibrosis through interaction with

macrophages and MCP-1/CCL2.

CD45+/Col1+ cells and renin-angiotensin-
aldosterone system in kidney fibrosis
  The renin-angiotensin-aldosterone system (RAAS) is a

major pathway in the pathogenesis of fibrosis and depends

on two major receptors, designated angiotensin II receptor

type 1 (AT1R) and receptor type 2 (AT2R). Upregulation

of RAAS was observed in UUO mice, in which plasma and

intrarenal angiotensin II content were elevated27). Renal AT1

mRNA and receptor binding also increased in this model28).

Aldosterone increased plasminogen activator inhibitor type

1 (PAI-1), a major inhibitor of extra cellular matrix (ECM)

degradation in rat fibroblasts. Aldosterone and TGF-β to-

gether produced dramatic synergistic effects on PAI-1 pro-

duction and subsequent ECM accumulation29). We hypoth-

esized that CD45+/Col1+ cells may depend on the RAAS

for their contribution to kidney fibrosis. In a mouse model,

the extent of kidney fibrosis in AT2R-KO mice was more

evident, concomitant with the larger number of infiltrating

CD45+/Col1+ cells in fibrotic kidneys30). CD45+/Col1+ cell

numbers in bone marrow also increased in mice with UUO,

especially in AT2R-KO mice. Pharmacologic inhibition of

AT1R reduced the degree of kidney fibrosis, along with

the decreased number of CD45+/Col1+ cells in the kidney

and bone marrow. AT1R inhibition also decreased the an-

giotensin-II－stimulated expression of type 1 procollagen

α1 mRNA in isolated human CD45+/proCol1+ cells, whereas

an AT2R inhibitor augmented the expression of type 1

procollagen α1 mRNA. These results suggest that AT1R/

AT2R signaling contributes to the pathogenesis of kidney

fibrosis30).

Stromal cell activation and kidney fibro-
sis
  Activation of local stromal cells (e.g., fibroblasts and

pericytes) and generation of myofibroblasts from epithelial

cells (via EMT) and endothelial cells (via EndMT) are as-

sociated with tubulointerstitial fibrosis31). Among these cells,

tubular epithelial cells, glomerular podocytes and endot-

helial cells undergo transition after injury, and are involved

in kidney fibrosis32-34).

   In contrast to the cell transition, Duffield et al. reported

that pericytes and perivascular fibroblasts were major

sources of collagen-producing cells in the pathogenesis of

kidney fibrosis35, 36). In addition to this finding, platelet-de-

rived growth factor receptor activates pericytes in a mouse

model of kidney fibrosis37). Pericytes were also reported as

collagen-producing cell in hepatic fibrosis and spinal cord

injury38, 39). These findings suggest that fibrosis by fibro-

blasts and pericytes would be principal and common path-

ways of organ fibrosis. In addition, Asada et al. reported

that EPO-producing cells in healthy kidney and scar-pro-

ducing myofibroblasts during fibrosis originate from the

same P0-Cre lineage-labeled extrarenal cells, which enter

the embryonic kidney at E13.5 to become renal fibroblasts

and transit from one another depending on the condition

of the kidney. They also demonstrated that almost all cor-

tical fibroblasts in the kidney arise from P0-Cre－express-

ing precursors40). These findings are important to specu-

late different lineage of fibroblasts. However, the recent

lineage tracing studies have excluded the role of EMT in

experimental kidney and liver fibrosis35, 41). Moreover,

Roufosse et al. revealed a minimal contribution of bone-

marrow-derived cells to collagen production in experimen-

tal kidney fibrosis, using collagen promoter reporter mice42).

Further studies are required to determine the origin and

contribution of stromal cells in kidney fibrosis.

Phospholipid mediators in kidney fibro-
sis
  There are a number of pro-fibrotic mediators. TGF-β could

be a principal mediator, which stimulates the differentia-

tion of fibroblasts into myofibroblasts and promotes extra

cellular matrix deposition. Lysophosphatidic acid (LPA) is
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a growth factor-like phospholipid, which is known to regu-

late several cellular processes including motility, prolifera-

tion, survival, and differentiation by acting LPA1-4 recep-

tors. UUO induced tubulointerstitial fibrosis was significantly

attenuated in LPA1-KO mice and, in LPA1 antagonist treated

WT mice43). Further, LPA induced proximal tubular cell se-

cretion of platelet-derived growth factor-β and connective

tissue growth factor through LPA244). Additionally, some

studies revealed the interaction between bone-marrow-

derived cells and phospholipid mediators. Maeda et al. in-

vestigated the involvement of sphingosine 1-phosphate

(S1P) receptor subtypes in S1P-induced migration of CD4

T cells and bone marrow-derived dendritic cells in mice45).

However, further studies needed to understand the pre-

cise contribution of phospholipid mediators in kidney fibro-

sis.

Conclusion and future directions
   Kidney fibrosis is caused by a complex network, consist-

ing of various cell sources including infiltrating bone-mar-

row-derived cells, activated resident stromal cells, and cells

derived from EMT/EndMT, and bioactive mediators, such

as cytokines/chemokines, RAAS, and phospholipid media-

tors (Fig.1). The interaction among fibrogenetic cells and

mediators promote inflammatory processes, resulting in

kidney fibrosis. Further studies are needed to clarify the

contribution of cell types in bone-marrow-derived cells for

kidney fibrosis.
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