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   Photoreceptor cells receive light and transduce it to electrical signals for visual perception.
However, excessive exposure to visible light causes photoreceptor cells to undergo apoptosis,
which is called photo-damage. This damage involves several biochemical events, including the
accumulation of oxidative stress and the elevation of intracellular calcium and nitric oxide (NO).
Photo-damage is thought to be related to the progression of retinitis pigmentosa and age-re-
lated macular degeneration. Therefore, understanding the molecular mechanisms of retinal photo-
damage using model animals may lead to new therapeutic approaches for preventing the pro-
gression of these ocular diseases. In this review, we summarize previous reports examining the
mechanisms of light-induced retinal damage, and briefly describe the interventional effect of
lutein against photo-damage in mice. Lutein is taken from food and systemically delivered to the
retina, skin, and certain organs and tissues. It reduces the level of reactive oxygen species and
acts as an anti-oxidant in the retina of light-exposed mice, ultimately preventing light-induced
DNA double-strand breaks and apoptosis. Although further study is required, lutein may be
proposed as a new therapeutic approach for preventing photo-damage in humans.
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Introduction
　Light is an essential external factor for living things, re-

quired for sight in animals as well as photosynthesis and

growth in plants. Light is also important for developing vi-

sual system; it maturates, receiving light stimuli after birth1).

However, light can also induce adverse effects on the eyes;

the exposure to excessive and/or intense light induces ir-

reversible visual dysfunction. Noell et al. first demonstrated

this effect in light-exposed animals2). That report was fol-

lowed by extensive studies in vivo and in vitro on the rela-

tionship between light and retinal degeneration3, 4).

　Light-induced photoreceptor apoptosis is reported to

occur in several phases, and many of the contributing fac-

tors have been identified4, 5), although the entire process of
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photo-damage has remained elusive. Interestingly, the first

step (the induction phase) of the damage may be triggered

by rhodopsin, an essential protein for light perception2, 6, 7).

For instance, rhodopsin knock-out mice are protected against

photo-damage8). Furthermore, inhibition of the visual cycle

by 13-cis retinoic acid, a putative 11-cis retinal dehydroge-

nase inhibitor9, 10), also prevents photo-damage11). The

chaperone protein RPE65 is distributed in the retinal pig-

ment epithelium, where the photoreceptor cells undergo

phagocytosis12); it is involved in the conversion of all-trans

retinol, to 11-cis retinal13). RPE65 knockout mice are also

protected against light damage8, 14). Taken together, the

evidence indicates that excessive stimulation of the visual

cycle is an important mediator of photo-damage; moreover,

accumulation of a rhodopsin bleaching intermediate, all-

trans retinal, is now proposed to be responsible for photo-

damage in the retina15).

　Following this induction phase, the death-signal phase

can be divided into two sub-phases, early and late5). In the

early phase, the intracellular calcium level increases, pos-

sibly caused by the activation of NO synthase. NO is a

gaseous signaling molecule with physiological and patho-

logical actions in vivo16). While a moderate level of NO in

the central nervous system (CNS) is involved in synapse

formation, its overexpression is reported to trigger intracel-

lular disorders such as endoplasmic reticulum stress, mi-

tochondrial morphologic change17), and membrane depolar-

ization18).

　In the late phase, AP-1 activation plays an essential role

in mediating photoreceptor apoptosis17). AP-1, a major

nuclear transcription factor composed of c-Fos and c-Jun

heterodimers, regulates various cellular events, including

cell transformation, proliferation, differentiation, and apop-

tosis19). Comprehensive gene expression analysis revealed

that a component of the AP-1 transcription factor, c-Fos, is

upregulated in the photo-damaged retina20), and the DNA-

binding activity of AP-1 is increased after light exposure21).

Mice that are deficient in c-fos exhibit normal retinal func-

tion and morphology22), but are highly resistant to photo-

damage, compared with wild-type mice23). Many current

studies are aimed at understanding the role of AP-1 in reti-

nal light damage; however, the molecules that function

downstream of AP-1 activation in photo-damage are still

unknown5).

　In addition to AP-1, caspases, a group of cysteine pro-

teases24), are also believed to contribute to retinal photo-

damage. In the light-exposed retina, the caspase-1 mRNA

and protein levels increase25, 26), suggesting that at least

caspase-1 participates in the induction of photoreceptor

apoptosis.

　An important implication of understanding the mecha-

nism of photo-damage, is the possibility of developing new

strategies for neuroprotection, in which these steps of the

apoptotic pathway are inhibited. Several cytokines are re-

ported to protect against photo-damage5). Interestingly, a

recent study revealed that erythropoietin, which stimulates

hematopoiesis, exerts a neuroprotective effect on light-in-

duced retinal degeneration27). An anti-inflammatory drug,

naloxone, also reduces retinal damage28, 29), consistent with

inflammatory events being associated with the light-ex-

posed retina30-32).

　These observations led us to examine whether molecules

with antioxidant activity could prevent retinal apoptosis and

preserve visual function after light exposure. We recently

showed that lutein (Fig.1), an antioxidant also known as a

food factor, scavenges reactive oxygen species (ROS) and

protects visual function against inflammatory ocular dis-

eases33,34). Thus, we next evaluated the beneficial effect of

the oral administration of lutein on light-induced retinal

degeneration.

　　

Lutein attenuates retinal photo-damage
　To elucidate the protective effect of lutein on light-induced

retinal degeneration, we exposed lutein-treated and vehicle-

treated BALB/c mice to 5000 lux of white light for 3 hours

after at least 12 hours of dark adaptation. Five days after

the light exposure, we performed electroretinography to

assess the biological effect of lutein on visual function. In

the vehicle-treated mice, light exposure induced a signifi-

cant reduction in the amplitude of the a-wave, which re-

flects photoreceptor cell function, and the b-wave, which

reflects the subsequent electrical reaction transmitted from

the photoreceptor cells. However, strikingly, in the lutein-

Fig.1 Structure of lutein
Double bonds and hydroxyl groups are believed to play critical roles

in its biological functions39, 40)
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treated mice, the reduction of these amplitudes was sig-

nificantly attenuated. Because photoreceptor cells are sus-

ceptible to light exposure35), we also measured the thick-

ness of the photoreceptor cell layer after light exposure.

Consistent with the electroretinography results, the thick-

ness of this cell layer was reduced after light exposure,

and this effect was significantly suppressed in the lutein-

supplemented mice compared with vehicle-treated mice.

　One manifestation of apoptosis is the appearance of

double-stranded DNA breaks (DSBs), which is detectable

as DNA fragmentation4). DNA damage results in the rapid

phosphorylation of Histone H2AX, which has an important

role in the repair of DSBs, at Ser139 in its C-terminus. To

detect the effect of lutein in protecting against DSBs, the

expression of phosphorylated H2AX (called gamma-H2AX)

was examined by immunohistochemistry. The results

showed that lutein-fed mice had fewer gamma-H2AX-posi-

tive photoreceptor cells than the controls.

　The dephosphorylation of tyrosine142 of H2AX by EYA3

contributes to DNA repair rather than promoting apoptotic

processes36). Therefore, we further investigated the expres-

sion of EYA3 with the concomitant detection of gamma-

H2AX. EYA3 was expressed only in the photoreceptor cell

layer after light exposure, and there were significantly more

EYA3-expressing cells in the mice fed a lutein-supple-

mented diet than in control mice. This upregulation of EYA3-

positive cells was also shown by western blotting.

　To elucidate the effect of lutein on the ROS level in reti-

nas after light exposure, the fluorescent probes dihydro-

ethidium (DHE) and BODIPY-C11 were used as indicators

of intracellular superoxide radicals37) and lipid peroxida-

tion38), respectively. The fluorescence intensity of DHE in-

creased in all the retinal layers after light exposure, but it

was clearly suppressed in the mice fed the lutein-supple-

mented diet. The latter sign of oxidization appeared in the

outer segment of photoreceptor cells in light-exposed mice

fed control chow compared with non-light-exposed mice.

However, this increase was significantly suppressed in the

retinas of light-exposed mice fed a lutein-supplemented

diet. These observations suggest that lutein’s ROS-reduc-

ing effect may be protective against the terminal phase of

photo-damage, reducing the amounts of DSBs and apop-

tosis (Fig.2).

　　

Conclusion
　The influence of light exposure on retinal damage in-

creases with age, and is involved in the progression of some

ocular diseases, such as retinitis pigmentosa (hereditary

retinal degeneration) and age-related macular degenera-

tion. Therefore, evidence-based preventive therapies

against photo-damage are required. Photo-damage occurs

not only in ocular tissues but also in the skin. Because

lutein is physiologically obtained from food and delivered

to the retina and skin, its therapeutic use against photo-

damage of both tissues may be feasible. Further studies

aimed at revealing the molecular mechanisms of lutein’s

effects will help us discover new treatments for protecting

tissues from photo-damage.
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