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Introduction
   Hematological and immunological disorders are abnor-

malities of the blood systems. Although elucidation of their

cellular pathophysiology has been largely based on in vitro

studies using patient-derived primary hematopoietic cells

or animal models, these approaches have potential limita-

tions. For example, patient-derived cells cannot be obtained

in unlimited quantities, and their in vitro functions can be

affected by in vivo conditions, such as the cytokine milieu

or therapeutic agents. Furthermore, in the case of multi-

system disorders, such as those associated with chromo-

somal abnormalities1), defects in DNA repair2), or meta-

bolic disorders3), obtaining patient-derived samples other

than blood is difficult, hampering the analysis of affected

cells or tissues. On the other hand, although murine mod-

els have provided important insights into various disorders,

differences in the hematological and immunological de-

velopment between mice and humans sometimes causes

discrepancies in the resulting phenotypes.

   Because of their pluripotency and capacity for self-re-

newal, human pluripotent stem cells (PSCs), such as em-

bryonic stem cells (ESCs) and induced pluripotent stem
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cells (iPSCs) are potential sources of cells for regenera-

tive medicine and other clinical applications, such as cell

therapies, drug screening, toxicology testing, and investi-

gation of disease mechanisms4, 5). iPSCs, first established

by Takahashi and Yamanaka, are reprogrammed somatic

cells with ESC-like characteristics that are generated by

introducing certain transcriptional factors such as OCT3/4,

SOX2, KLF4 and cMYC6, 7). These transcriptional factors

can be delivered into the source cells by viral vectors, epi-

somal vectors8), piggybac transposon9) or modified synthetic

RNA10). Discovery of disease-associated iPSCs has led to

the development of a new field of disease modeling, as

they can provide somatic cells which cannot be directly

obtained from each patient.

Directed differentiation into hematopoi-
etic cells from human PSCs
   Although patient- or disease-specific iPSCs are an im-

portant resource for unraveling human hematological dis-

orders, a robust and simple hematopoietic differentiation

system that can reliably mimic in vivo hematopoiesis is

necessary for this purpose. The leading methods of he-

matopoietic cell induction from PSCs employ two different

systems: namely, monolayer animal-derived stromal cell

co-culture and three-dimensional embryoid body (EB) for-

mation. Both methods can produce hematopoietic cells from

mesodermal progenitors, and combinations of cytokines

can control, at least to some extent, the specific lineage

commitment11-19). We recently established a robust and

simple monolayer hematopoietic cell differentiation system

from human PSCs20). Our system is free from xeno-feeder

cells or serum, and can trace the in vitro differentiation of

human PSCs into multiple lineages of definitive blood cells,

such as functional erythrocytes and neutrophils.

   Because human PSCs are feasible cell sources for vari-

ous clinical applications, the scientific and medical com-

munities have shown continuing interest in hematopoietic

stem cell (HSC) induction from PSCs. Previous trials have

indicated that murine ESC-derived hematopoietic cells

overexpressing HoxB4 resulted in long-term myelo-lym-

phoid reconstitution in the bone marrow of lethally irradiated

recipient mice21). However, the transduction of HOXB4 was

not sufficient to develop fully functional human HSCs22),

and it remains a challenge to develop bona fide human

HSCs with bone marrow reconstitution activity at the single-

cell level.

   Despite the recent advances, the directed differentiation

of human PSCs into definitive hematopoietic cells in vitro

is also still challenging. Most cultures develop into mostly

nucleated erythrocytes with a primitive or definitive fatal

type hemoglobin expression pattern (α- and γ-globins),

and the robust and effective derivation of enucleated adult

type α- and β-globin-expressing red blood cells from hu-

man PSCs remains elusive. The differentiation of lymphoid

cells is also relatively difficult. While T-lymphocytes can be

derived from human PSCs on OP9-DL1 feeder layers19),

the terminal differentiation into B-lymphocytes remains to

be accomplished, because it has so far not been possible

to make cells go through the pre-B state23). Several groups

have reported the derivation of functional natural killer cells

from PSCs24, 25).

Disease-associated iPSCs from patients
with hematological or immunological dis-
orders26-45)

   A number of disease-associated iPSCs generated from

patients with hematological or immunological disorders

have been reported (Table 1). However, several papers

just reported the establishment of iPSC clones, while dis-

cussing the potential usefulness of disease-associated

iPSCs as a resource for disease analysis. The first report

of disease-associated iPSCs derived from patients with a

hematological disorder was iPSCs from Fanconi anemia

(FA)27). Raya et al. established FA patient-derived iPSC

clones from Fanconi anemia patients after correcting ge-

netic defects in the parental fibroblasts. Uncorrected fibro-

blast could not be reprogrammed into iPSCs, indicating

that the Fanconi anemia pathway is requisite for reprogram-

ming. The corrected iPSC clones could differentiate into

hematopoietic cells normally. Recently, another group

found that iPSCs from Fanconi anemia patients could be

generated without complementation, although the efficiency

was extremely low26).

   For β-thalassemia, one of the most common hereditary

anemias46), disease-associated iPSC studies have been

mainly conducted towards proving that the iPSC technol-

ogy could be used to generate gene-corrected cells with

potential value for cell therapy. Wang et al., genetically

corrected iPSCs from a β-thalassemia patient by homolo-

gous recombination, and differentiated them into hemato-

poietic progenitors29, 31). When the cells were transferred to

sub-lethally irradiated NOD/SCID mice, the hemoglobin
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level recovered efficiently. Papapetrou et al. showed that

transduction of a lentivirally encoded β-globin transgene

into genomic safe harbors enabled high expression of the

transgene in β-thalassemia iPSC-derived erythroid pro-

genitors30). Similar to β-thalassemia, two groups reported

genetic correction using cells from patients with sickle cell

anemia33-35).

　 Regarding immunological disorders, two groups recently

established iPSCs from patients with chronic granuloma-

tous disease (CGD)36, 37), a primary immunodeficiency char-

acterized by impaired phagocytic killing of microorganisms

by neutrophils and macrophages47). Both groups demon-

strated that the differentiated neutrophils from disease-as-

sociated iPSCs lack the production of reactive oxygen spe-

cies (ROS) in response to proper stimulus. As a model for

gene therapy, Zou et al. restored the neutrophil ROS pro-

duction in X-linked CGD iPSCs by zinc finger nuclease-

mediated gene targeting of a single-copy gp91phox thera-

peutic minigene into one allele of the “safe harbor” AAVS1

locus37).

　Disease-associated iPSCs from patients with chronic

myeloid leukemia (CML) have also been reported38-40). The

sources of iPSCs were a cell line, KBM739), primary bone

marrow cells38), and CD34+ cells40). All iPSC clones bore

the translocation of 9;22 breakpoints of the BCR/ABL fu-

sion gene. Interestingly, although the parental cell lines

were sensitive to the tyrosine kinase inhibitor imatinib, thus

showing their dependency on BCR/ABL oncogene signal-

ing, a loss of oncogene addiction was observed in the re-

programmed iPSC clones40). The hematopoietic differen-

Table 1 Reported disease-associated iPS cell lines representing hematological and immu-

nological disorders

＊, ＊＊Reported by the same group.
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tiation of these iPSCs recovered their sensitivity to imatinib.

　One of the interesting characteristics of iPSCs is that

each iPSC clone originates from a single somatic cell48).

By taking advantage of this, we have proposed that iPSC

technology can be used to dissect and evaluate the ge-

netically different somatic cells from an individual41). In

CINCA syndrome, an autoinflammatory syndrome caused

by mutations of the NLRP3 gene, 30 to 40% of patients

have mutations in NLRP3 in only a small number of so-

matic cells49, 50), and it remains controversial whether the

small fraction of NLRP3-mutated cells actually causes the

strong autoinflammation in these patients, or if all cells carry

an unknown mutation of another gene that causes the dis-

ease. To resolve this controversy, mutant and non-mutant

iPSC lines were established from the CINCA patients with

somatic mosaicism. By analyzing the disease-relevant char-

acteristics of IL-1β secretion from the iPSC-derived mac-

rophages, we demonstrated that mutant macrophages are

mainly responsible for the disease phenotype in the mo-

saic patients, confirming the role of NLRP3.

Limitations and unsolved issues for stud-
ies of disease-specific iPSCs
　As discussed above, most of the previously reported dis-

ease-associated iPSC studies have been just“disease-

modeling”or proof-of-principle studies. To gain more in-

sight into disease pathophysiology by using iPSC technol-

ogy, several issues still need to be overcome. One of the

most critical issues is to develop a method to obtain ma-

ture, fully functional hematopoietic cells, including HSCs.

Another concern is that, even if iPSCs are obtained from

an individual, the differentiation efficiency and/or functions

of hematopoietic cells will show inter-clonal variation, which

hampers the accurate estimation of the disease-associated

phenotypes of patient-derived iPSCs. These variations may

derive from inter-clonal genetic variations51), epigenetic

modifications52), the source of iPSCs, residual transgenes

of each iPSC clone, or, in female cases, the alteration of

the status of X chromosome inactivation53, 54). Additionally,

fibroblasts obtained from patients with certain diseases,

such as Fanconi anemia27) and dyskeratosis congenita43),

show extremely low reprogramming efficiency. For these

types of diseases, a specific reprograming strategy, such

as transient genetic complementation, may therefore be

required.

Conclusion
　Although disease-associated iPSCs are useful tools, their

proper differentiation into functional hematopoietic cells is

essential for elucidating the cellular pathophysiology of

hematopoietic and immunological diseases. The establish-

ment of suitable disease models that can represent the in

vivo phenotype is also important. Rapid technological ad-

vances in iPSCs and their differentiation will open up a

new horizon for studies that can aid in understanding hu-

man diseases.
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