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   The interactions of stem cells with their supportive microenvironmental niches are mediated
by signaling networks that control the balance between cellular self-renewal and differentiation.
In hematopoietic stem cells (HSCs), the bone marrow (BM) supports both of these processes
within specialized niches, namely, osteoblastic and perivascular niche, which contain supportive
cellular and non-cellular elements. This review discusses HSC niches and niche cell populations,
focusing on the osteoblastic niche cells in three fractions: osteoblast-enriched ALCAM+Sca-1-

and ALCAM-Sca-1-, and immature mesenchymal cell-enriched ALCAM-Sca-1+ cells. Gene expres-
sion profiling showed that the ALCAM-Sca-1+ fraction highly expressed cytokine-related genes
whereas in the ALCAM+Sca-1- fraction the predominantly expressed genes were those related to
cell adhesion. In addition, by using single-cell gene expression analysis, we identified an osteo-
blastic markerlow/- subpopulation in ALCAM+Sca-1- cells, which includes cells that express rela-
tively high levels of pluripotent markers. Together, these findings indicate that multiple cell popu-
lations cooperatively support HSCs in the osteoblastic niche. Understanding the niche signals
that regulate HSC maintenance and terminal differentiation could provide the basis for niche-
based therapies that protect HSCs from various stresses and promote the exexexexex     vivovivovivovivovivo expansion of
HSCs.
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   Stem cells are characterized by their self-renewal ca-

pacity as well as their potential to differentiate into single

or multiple types of daughter cells. They are maintained in

different tissues by general genetic programs1, 2), although

the critical genes responsible for the functioning of these

programs are likely to differ across stem cell types.

   Hematopoietic stem cells (HSCs) are responsible for

blood cell production throughout the lifetime of the indi-
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vidual. Among bone marrow (BM) HSCs, which are the best-

characterized stem cells, various subsets can be isolated

using cell surface markers3). HSCs differentiate into sev-

eral blood cell lineages4-6).

   Stem cells reside within a supportive microenvironmen-

tal niche composed of cellular and non-cellular components.

The interactions between HSCs and niche supportive cells

are mediated by signaling networks that control the balance

between stem cell self-renewal and differentiation7-9). Fur-

thermore, the balance between HSC quiescence and acti-

vation (proliferation and migration) requires the coopera-

tive regulation exerted by the non-cellular elements:

cytokines, chemokines, adhesion molecules, proteolytic

enzymes, neurotransmitters and transcription factors8, 10).

An understanding of the influences controlling the fate of

BM-HSCs therefore requires elucidation of the molecular

interactions between these cells and their niches.

The hematopoietic niche
   In hematopoiesis in the adult, the BM supports both the

self-renewal and the differentiation of HSCs at particular

sites. The localization of HSCs in the endosteum (the bor-

der between the bone and the BM) and in perivascular sites

of the BM led to the identification of osteoblastic (also called

endosteal) and perivascular niches, both of which are

broadly distributed in the BM. Thus, within the BM HSC

niche, HSCs interact with both of the aforementioned niches

(Fig.1). Indeed, the vascular network extends into the out-

ermost regions of the endosteal surfaces, suggesting a

close relationship between HSCs, the osteoblastic niche,

and the perivascular niche in the regulation of hematopoie-

sis, bone formation, and vascular remodeling11, 12).

Niche cell populations supporting hemato-
poietic stem cells
   The regulation of HSC maintenance in the hematopoi-

etic niche requires numerous cell types: mesenchymal

stem/progenitor cells (MSCs/MPCs), osteoblasts, reticular

cells (Cxcl12 abundant reticular cells: CAR cells), endot-

helial cells, perivascular cells, adipocytes, osteoclasts, mac-

rophages, regulatory T cells, cells of the sympathetic ner-

vous system, and Schwann cells13-20).

   In particular, the Nestin+ MSC population was shown to

be distributed within the perivascular area in close asso-

ciation with HSCs and catecholaminergic nerve fibers.

Compared with their Nestin- counterparts, Nestin+ MSCs

highly express genes related to HSC regulation, such as

Cxcl12, Kitl, and Angpiopoietin1 (Angpt1). Furthermore,

the depletion of Nestin+ MSCs was shown to cause a de-

cline of HSCs in the BM19), suggesting that Nestin+ MSCs

are a central cellular component of the HSC niche in the

BM19).

　We previously reported that Angpt1 and Mpl/Thrombo-

poietin (Thpo) signaling between HSCs and osteoblastic

niche cells is critical for the enhancement of cell-to-cell and

cell-to-extracellular matrix interactions of HSCs with niche

cells, as well as for the maintenance the cell cycle quies-

cence of HSCs in the endosteal area21, 22). However, the

cells in the endosteal region are a heterogeneous popula-

tion in terms of their differentiation status and accompany-

ing functions23, 24), and their precise cellular and molecular

contributions to the HSC-supportive microenvironment is

unclear.

　In a series of experiments we isolated endosteal niche

cells, with the aim of characterizing their function with re-

spect to the maintenance of HSCs. Subpopulations of the

endosteal cell fraction were obtained from the mouse BM

Fig.1  The HSC niche
HSCs interact with both osteoblastic and perivascular niches in

the BM. Many types of cells, including mesenchymal stem/pro-

genitor cells (MSCs/MPCs), Schwann cells, endothelial cells, re-

ticular cells, osteoblasts, adipocytes, and osteoclasts, contribute

to the regulation of HSCs.
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based on their expression of the markers ALCAM and Sca-1.

Bone-associated cells were isolated by collagenase treat-

ment of tibial and femoral bone fragments. Non-hemato-

poietic and non-endothelial cells in the CD45-CD31-Ter119-

fraction were enriched and further subdivided into three

fractions: ALCAM+Sca-1-, ALCAM-Sca-1+, and ALCAM-

Sca-1- cells25). Analysis of the differentiation potential of

these fractions together with conventional gene-expression

PCR revealed that ALCAM+Sca-1-, ALCAM-Sca-1-, and

ALCAM-Sca-1+ cells are mature osteoblasts, immature

osteoblasts, and mesenchymal progenitor cells, respec-

tively. Cells of the ALCAM-Sca-1+ population expressed

the highest levels of MSC-associated genes, such as

Endoglin and CD90, and differentiated into osteoblasts and

adipocytes, By contrast, their TGFβ3-iduced differentia-

tion into chondrocytes was significantly lower than that of

previously-reported MSC population26, 27). It was therefore

concluded that bone-associated ALCAM-Sca-1+ cells are

progeny of Nestin+ MSCs.

Function of endosteal niche cell popula-
tions in the maintenance of HSCs
   In examining the ability of the three endosteal cell popu-

lations to maintain HSC activity, we found that all of them

supported the long-term repopulation activity of HSCs. In

particular, ALCAM+Sca-1- cells showed robust supporting

activity for HSCs when placed in an in vitro coculture. LSK

cells expressed significantly higher levels of homing- and

cell-adhesion-related genes, such as Cxcr4, Itga2b, Itgb2,

Cd44, Cdh2 (N-cadherin), and Vcam1, when cocultured

with ALCAM+Sca-1- than when cocultured with ALCAM-

Sca-1+ cells. In addition, ALCAM+Sca-1- cells significantly

up-regulated the expression of Gfi1, Hoxb4, Cdkn1c,

Foxo3, and Sox2 in LSK cells. These data suggested that,

during culture, ALCAM+Sca-1- cells either enhance the long-

term repopulation (LTR) activity of HSCs or enrich a cell

population with higher intrinsic LTR activity.

   Microarray analysis revealed that cytokine- and cell ad-

hesion-related genes are expressed in distinct endosteal

cell fractions. Specifically, cytokine-related genes are highly

expressed in ALCAM-Sca-1+ cells, suggesting that this

population regulates HSCs through the production of

cytokines influencing both HSC proliferation and quies-

cence. By contrast, ALCAM+Sca-1- cells expressed genes

for multiple cell adhesion molecules, indicating that this

sub-population physically regulates HSC quiescence via

cell adhesion molecules. We therefore hypothesized that

multiple endosteal populations cooperatively regulate HSC

function in the BM osteoblastic niche (Fig.2).

Developmental changes in endosteal cell
gene expression
   We also investigated changes in the features of

ALCAM+Sca-1-, ALCAM-Sca-1-, and ALCAM-Sca-1+ cells

during postnatal development of the BM. Since postna-

tally, HSCs undergo a shift from a cycling to a quiescent

Fig.2 Role of endosteal cell populations in HSC

regulation
In the osteoblastic niche, mesenchymal progenitor

cells, osteoprogenitor cells, and osteoblasts coop-

eratively regulate HSCs. Mesenchymal progenitor

cells and osteoprogenitor cells produce cytokines

that control HSC proliferation and quiescence. By

contrast, mature osteoblastic cells express multiple

adhesion molecules, such as N-cadhein, OB-

cadherin, and ALCAM, and therefore may serve as

a scaffold for HSC anchoring, in addition to physi-

cally regulating HSCs via cell-to-cell adhesion. The

osteoblast ic marker low/- sub-populat ion of

ALCAM+Sca-1- cells express pluripotent stem cell

markers and produce cytokine and cell adhesion

molecules. The potential of these cells in terms of

their self-renewal activity, differentiation potential,

and function in HSC maintenance remains to be elu-

cidated.
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state21), the function of the BM niche likewise changes, from

supporting expansion to the maintenance of HSC quies-

cence. Consistent with this scenario, osteoblast popula-

tions isolated from the bones of younger mice (2-4 weeks

old) expressed high levels of genes encoding VEGFa,

Angpt2, and MMPs. MMP9 is known to induce the shedding

of membrane-anchored growth factors such as Kitl28, 29),

while soluble-Kitl reportedly induces HSC proliferation. We

therefore hypothesized that endosteal cells induce HSC

proliferation through the activation of vascular remodeling

and the production of soluble growth factors during post-

natal development.

Identification of immature cell popula-
tions in endosteal cells
   Recently, there have been tremendous advances in the

techniques for analyzing gene expression patterns at the

single-cell level. Unlike conventional gene expression analy-

ses using pooled cell samples, single-cell analysis can be

used to identify specific sub-populations within heteroge-

neous cell populations. Thus, using single-cell real time

PCR array analysis (Dynamic ArrayTM, Fluidigm), we char-

acterized ALCAM+Sca-1- and ALCAM-Sca-1+ cell fractions

in greater detail, analyzing the expression of genes encod-

ing osteoblastic markers, cytokine signals, extracellular

matrices, cell adhesion molecules, MMPs, MSC markers,

and pluripotent stem cell markers in single-cell samples of

the two fractions. The general trend in the gene expres-

sion patterns of each fraction was consistent with the re-

sults of both conventional real time PCR and microarray

analysis of pooled cell samples. Interestingly, the

ALCAM+Sca-1- fraction was determined to be heteroge-

neous, such that a unique subpopulation (osteoblastic

markerlow/-, comprising ～36% of ALCAM+Sca-1- cells) was

identified in which osteoblastic markers were expressed at

very low levels or not at all. Furthermore, approximately

40% of these osteoblastic markerlow/- ALCAM+Sca-1- cells

expressed genes encoding BM-HSC niche-related

cytokines, such as Angtp1 and Thpo. Also of interest was

the observation that ～ 30% of the osteoblastic markerlow/-

cells expressed pluripotent stem cell markers, such as Sox2,

Oct3/4, and Nanog, at relatively high levels compared with

ALCAM+Sca-1- and ALCAM-Sca-1+ cells (Fig.2). These data

indicated that the endosteal area contains cells express-

ing these markers.

Conclusion and future directions
   Recent progress in the research of stem cell niches has

advanced our understanding of the cellular and molecular

constituents of the HSC niche. It is now clear that this niche

is multicellular, with multiple stromal cell types contributing

to HSC regulation. Understanding the niche signals that

regulate HSC maintenance and terminal differentiation

could provide the basis for niche-based therapies target-

ing both the protection of HSCs from various stresses and

the ex vivo expansion of HSCs.

　The potential of the osteoblastic markerlow/- ALCAM+Sca-1-

cells, in terms of their self-renewal activity, differentiation

potential, and function in HSC maintenance, remains to be

determined but this potential certainly constitutes an area

of clinical and therapeutic interest. In addition, by applying

more detailed fractionation methods based on single-cell

gene expression, a detailed characterization of niche cell

components may soon be possible.
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