
72Inflammation and Regeneration    Vol.32  No.3    MAY  2012

KKKKKey wey wey wey wey wooooordsrdsrdsrdsrds bone tissue engineering, hydrogel bio-mimetic scaffolds, nanotopography,

mesenchymal/skeletal stem cells, osteoprogenitors, tissue regeneration

Review Article

Skeletal Regeneration: application of nanoto-
pography and biomaterials for skeletal stem cell
based bone repair

Jonathan I. Dawson1), Emmajayne Kingham1), Nicholas R. Evans1),

Edward Tayton1) and Richard O.C. Oreffo1, 2,  ＊＊＊＊＊)

1)Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human
Development and Health, Institute of Developmental Sciences, Southampton General Hospital, Southampton,
England
2)Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia

   The application of selected skeletal progenitor cells and appropriate biomimetic microenvironments

and nanotopographical surfaces offer the potential for innovative approaches to bone disease treatment

and bone regeneration. Skeletal stem cells, commonly referred to as mesenchymal stem cells or human

bone marrow stromal stem cells are multipotent progenitor cells with the ability to generate the stromal

lineages of bone, cartilage, muscle, tendon, ligament and fat. This review will examine i) the application

of innovative nanotopography surfaces that provide cues for human stem cell differentiation in the absence

of chemical cues, ii) unique biomimetic microenvironments for skeletal tissue repair as well as iii) data

from translational studies from the laboratory through to the clinic demonstrating the potential of skeletal

cell based repair using impaction bone grafting as an exemplar. The development of protocols, tools and

above all multidisciplinary approaches that integrate biomimetic materials, nanotopography, angiogenic,

cell and clinical techniques for skeletal tissue regeneration for de novo tissue formation offers an oppor-

tunity to improve the quality of life of many.
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Introduction
　Skeletal tissue engineering is set to play an important

role in addressing the challenges of bone regeneration in

an ageing population to improve human health through

prevention of disease and reparation of skeletal tissue and

function. The clinical burden is significant with fractures

alone costing the European economy   17 billion and the

US economy $20 billion annually. Furthermore, in the US,
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there are over 8 million bone fractures of which approxi-

mately 5% to 10% are associated with delayed healing or

non-union. This is further compounded by recent data in-

dicating osteoporosis affects an estimated 75 million people

in Europe, USA and Japan; while it is projected that the

worldwide incidence of hip fractures will increase by 310%

in men and 240% in women by 20501). Thus, in combination

with bone loss due to trauma, tumor resection or an inabil-

ity to heal due to disease or old age there is an urgent

clinical need for the development of skeletal reparative strat-

egies to address this healthcare burden. Bone tissue engi-

neering and regenerative medicine seek to address this

challenge utilizing a raft of interdisciplinary approaches in-

cluding developmental biology, materials science, stem

cells and bioengineering to harness the therapeutic poten-

tial of skeletal stem cells together with an appropriate scaf-

fold, factors and an appropriate conditioned environment

(bioreactor or in vivo). The aim being to generate a three-

dimensional living tissue construct that is functionally struc-

turally and mechanically equivalent to, if not superior to

the tissue it has been designed to replace. However, a key

issue in the success of bone regeneration is the source of

stem cells and the absence of a definitive marker for skel-

etal stem cell populations; this has restricted their wide-

spread clinical application. Similarly, scaffolds that can

support bone tissue formation and modulate stem cell dif-

ferentiation along appropriate lineages in combination with

angiogenesis and niche development for bone will be im-

portant in delivering on cellular-based skeletal regenera-

tive applications. Thus, an ideal scaffold for skeletal tissue

regeneration would not only promote skeletal stem/ pro-

genitor cell attachment, viability and growth, but importantly

would aid differentiation of this progenitor population into a

population of cells capable of bone formation.

   The osteoblast, the cell responsible for bone formation,

is derived from a multipotential marrow stromal cell which

has been shown to support bone formation and hemato-

poietic marrow2). The term, mesenchymal stem cells

(undifferentiated multipotent cells of the mesenchyme) has

gained wide acceptance, although this term is nonspecific

and the term skeletal stem cell (SSC) will be used through-

out this review to restrict description to stem cells from bone

marrow able to generate all skeletal tissues3, 4) as, to date,

the ability for regeneration or maintenance of a non-skel-

etal tissue compartment in vivo remains to be rigorously

demonstrated and remains controversial. A number of stud-

ies have proposed positive selection of skeletal stem cells

on the basis of an increasingly large panel of markers

including CD71 (transferrin receptor), CD63, CD49a

(Integrin alpha1), CD44, the STRO-1 antigen and adhesion

molecules, such as CD166 (ALCAM), CD146 (MCAM),

CD106 (VCAM-1), CD54 (ICAM-1) and CD29 (Integrin

beta 1)5-7) though as yet, no single marker, or combination,

defines the cell-surface profile of a demonstrably homoge-

neous multipotential skeletal stem cell population8). We rou-

tinely use the monoclonal antibody STRO-1 to immuno-

select a distinct sub-population of bone marrow mono-

nuclear cells that is enriched for multipotent clonogenic

progenitor cells with bone forming capacity, as demon-

strated using diffusion chambers that provide a unique

closed environment9). This brief review will focus on the

use of enriched human skeletal stem cell populations to-

gether with i) determination of innovative hydrogel regen-

erative microenvironments, ii) application of nanoto-

pographical cues to modulate stem cell function in the ab-

sence of chemical cues and iii) translational and clinical

developments from small animal studies through to patient

studies using impaction bone grafting as an exemplar.

Hydrogel Strategies for Regenerative Mi-
croenvironments
　The application of hydrogels to bone repair reflects a

shift in the conceived role of biomaterials in orthopedics.

Traditionally biomaterials have been applied in orthopedic

contexts as bone substitute or bone filler materials for which

long-term integration with existing bone and equivalent

mechanical strength are fundamental design criteria. How-

ever as biomaterial research increasingly focuses on the

development of biomaterials as matrices for bone regen-

eration that serve to deliver cells and/or growth factors to

the site of damage and provide an appropriate microenvi-

ronment for bone regeneration, radically different functional

properties are being specified10, 11). For example, while

weight bearing functionality may be a useful property for

an orthopedic regenerative strategy, it is arguably not a

prerequisite specification as ultimately such functionality

is to be provided by the regenerated tissue and in many

contexts temporary support can be achieved via alterna-

tive orthopedic techniques12). Despite, therefore, possess-

ing negligible potential for weight bearing functionality hy-

drogel technology is increasingly being applied to orthope-

dic problems due to the considerable potential of hydrogels
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as matrices for regeneration.

1)Hydrogel structure and delivery

　In their broadest definition hydrogels are highly hydrated,

three dimensional networks of large organic molecules or

small inorganic particles formed by physical or chemical

interaction13). The high water content (>90%) of hydrogels

facilitates diffusion of oxygen and nutrients and contrib-

utes to the biocompatibility of the material suggesting

hydrogels as excellent candidates for tissue regeneration

matrices14, 15). Hydrogels can be categorized according to

their microstructure as per the distinctions proposed by

Flory16) between; 1) covalently bonded polymer networks;

2) polymer networks formed through physical aggregation

of polymer chains; and 3) ordered lamellar structures (as

in the mesophases of inorganic clays). Considerable at-

tention has been paid to the mode of gelation of hydrogels,

with a major goal being the development of injectable

hydrogels17, 18). As well as allowing for minimally invasive

delivery of cells and molecules, injectability and gel-forma-

tion in situ allows for regenerative constructs to effectively

fill spaces, and perfuse porous structures, such as bone

graft material, without requiring elaborate prefabrication

procedures.

　The different microstructures of physically networked and

covalently networked polymer hydrogels are analogous to

their mode of gelation and typically give rise to altered

mechanical properties. Both these characteristics are of

relevance to tissue engineering. The networks of physical

polymer gels are formed of various reversible links includ-

ing molecular entanglements, ionic interactions, hydro-

gen bonds, hydrophobic associations and Van der Waals

forces14, 15, 17). These associations are non-permanent or

reversible as they can be formed or disrupted by physical

changes such as pH, temperature and ionic strength19). The

reversible nature of these networks facilitates minimally

invasive delivery through the mixing and injection of gel/

cell/factors prior to gelation in situ19, 20). Thermoresponsive

gelation is a widely studied approach to the formation of

physical hydrogels where a sol-gel phase transition is en-

gineered to occur as body temperature is approached21).

For example, Triblock copolymers, using various combi-

nations of synthetic molecules such as poly(l-lactic acid)

(PLLA), poly(lactic-co-glycolic acid), (PLGA) and poly

(ethylene glycol) (PEG) (e.g. PLGA-PEG-PLGA or PEG-

PLLA-PEG), have been widely applied in tissue regenera-

tion approaches. Phase transition to a macroscopic gel is

achieved through the sequential assembly, bridging and

packing of micelles in response to an increasing tempera-

ture17, 21).

   The ability of physical hydrogels for biocompatible in situ

gelation is a significant advantage, however the physical

and ionic cross-linking mechanisms, particularly in natu-

rally derived molecules such as collagen or fibrin, are diffi-

cult to control and can result in gel inhomogeneities com-

plicating the regenerative outcome17). In contrast, while the

process of chemical cross-linking and the toxicity of cer-

tain cross-linking agents creates challenges for in situ ge-

lation, chemically cross-linked hydrogels enable consider-

ably more control over the micro-structure of the gel allow-

ing for mechanical properties which can be tailored accord-

ing to the number of crosslinks in the network and, de-

pending on the nature of the crosslinks, longer degradation

times22). Synthetic polymers such as poly(ethylene glycol)

(PEG), poly(propylene fumurate) (PPF), and poly(N-

isopropylacrylamide) (PNIPAAM), in particular provide ver-

satile platforms, and have been extensively developed for

regenerative medicine applications23). Thus various cross-

linking approaches compatible with good cell viability have

been developed. Photoinitiated polymerisation of, particu-

larly PEG macromolecular monomers, are particularly well

studied, though the reliance on a photo-source for activa-

tion of free-radicals may not be suitable for deep-tissue

applications17, 23). Other approaches include Micheal-type

conjugate addition reactions, Schiff-based reactions and

the use of the cross-linker genipin, all of which allow for

non-cytotoxic gel-network formation17).

2)Hydrogels for regeneration

   In addition to providing a route for the delivery of stem-

cells, the tissue regeneration matrix serves to provide a

regenerative micro-environment, or niche, directing cell

behavior24). Critical to this function is the ability to control

the presentation, in space and time, of bioactive molecules

that direct the growth and differentiation of progenitor popu-

lations. In addition to concerns to enhance efficacy, sys-

temic toxicity is a risk due to the multiple bio-efficacy of

many growth factors and so controlled local delivery is also

important in relation to safety25). This however constitutes

a considerable challenge, as the open polymer networks

that characterize many hydrogels typically result in the rapid

release of incorporated soluble molecules. For example
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one study calculated the diffusivity of the relatively large

molecule, bovine serum albumin, encapsulated in a hyalu-

ronic acid/PEG hydrogel to be little under 10% of it’s dif-

fusivity in water26, 27).

   Thus various approaches have been developed to modify

hydrogels to control the release of encapsulated molecules.

Such modifications have included, increased cross-link

density26, 28), incorporation of charged or lipophilic sections

and functional groups29-31) or co-encapsulation of charged

or lipophilic micro-particles32, 33).

   We have recently investigated the potential of gels formed

by the electrostatic interactions of clay nano-particles to

localize biological molecules34). Clay-protein interactions,

via cation exchange, hydrophobic and interlamellar mecha-

nisms, have long been harnessed, typically in tablet form,

to delay or localize the action of therapeutic molecules35, 36).

Using low concentration (1.5-3%) hydro-dispersions of

laponite, which self-organize in response to an ionic me-

dia, we observed minimal release of encapsulated protein

over 72 hours, and conversely a rapid uptake of protein

from the surrounding media. This high sorptive potential

allowed the co-localization of the adhesion molecule

fibronectin, and the angiogenic factor vascular endothelial

growth factor 165 (VEGF165 ) to induce an angiogenic re-

sponse in vitro and in a murine defect model34). The facility

for in situ self-assembly in response to physiological sa-

line together the capacity for protein localization without

the need for complex chemical/physical approaches offers

a simple yet powerful means to develop and deliver mi-

croenvironments for tissue regeneration (Fig.1).

   In addition to encapsulation, direct covalent immobiliza-

tion of growth factors is also an important means of achiev-

ing growth factor localization37, 38). As well as minimizing

non-target effects, immobilization of the growth factors can,

in fact, enhance local performance. Bentz et al.37) demon-

strated an enhanced fibroblast response (resulting in new

collagenous connective tissue deposition) when transform-

ing growth factor beta 2 (TGF-β2) was conjugated to col-

lagen via a PEG based chain as compared to admixed

formulations of collagen and TGF-β2. Furthermore, such

an approach, provided for the incorporation of enzymati-

cally-degradable elements in the design of hydrogels thus

allowing for cell mediated scaffold degradation and growth-

factor release39). One such approach utilized a matrix meta-

lloproteinase (MMP) degradable PEG scaffold to control

VEGF delivery and allow invading local endothelial cell-

mediated release of the growth factor40).

   In vivo, the extracellular matrix, not only mediates the

diffusion of chemical and biological signals, but is further

associated with directing cell growth and differentiation via

direct interaction with cell surface receptors. Thus, for ex-

ample, Type I collagen, the major organic component of

bone extracellular matrix, is chemotactic to fibroblasts

possessing high affinity cell binding domains and type I col-

lagen-specific binding has been found to mediate the osteo-

genic response of human bone marrow stromal cells3, 41, 42).

Due to their hydrophilic nature hydrogels do not readily

absorb the biological molecules that direct cell behavior.

While presenting a challenge for the manufacture of bio-

logical environments, this also constitutes an opportunity

for the bottom-up construction and assessment of biologi-

cal environments with minimal biological interference from

the hydrogel scaffold43). Common approaches have in-

volved covalently incorporating into the polymer network

proteins or peptide sequences. Matrix and adhesion mol-

ecules such as fibronectin44, 45) and the RGD peptide

(Arginine－Glycine－Aspartic acid), ubiquitous in extra-

cellular matrix and promoting integrin-receptor type bind-

ing to most cell types46-48), have been extensively studied

in this respect. Recent approaches have combined pep-

Fig.1   Clay base hydrogels for tissue regeneration
Injectable suspensions of clay nano-particles self organize into gels

via electrostatic interactions allowing encapsulation of cells and

proteins (A). Sub encapsulation of microcapsules containing FITC

labeled lysozyme (B) and DAPI labeled dsDNA (C) after 5 days

indicated alternate protein distributions related to the different elec-

trostatic properties of the encapsulated molecules. Co-addition of

the matrix molecule fibronectin enhanced the matrix secretion of

encapsulated bone marrow stromal cells (D) compared with con-

trols (E).
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tide sequences that self-organize into hydrogels with an

RGD-based peptide and a peptide sequence mimicking

the molecule VEGF allowing a hydrogel that is able to self-

organize in situ and stimulate angiogenesis49, 50).

　The use of two-photon chemistry that can allow com-

plex protein binding patterns under the control of a mul-

tiphoton confocal laser, has provided a basis to control the

concentration of biological molecules over the range of

10-20μm in three dimensions51). This approach, in which

chemical binding sites are patterned by photo-chemistry

and then subsequently flushed to bind the biomolecule of

interest, was used to create a 3D gradient of immobilized

VEGF165 to induce a chemotactic response in endothelial

cells52). This approach was further developed by utilizing

different orthogonal physical binding pairs to allow the si-

multaneous spatial control of two different growth-factors

involved in retinal precursor cell differentiation, sonic

hedgehog and ciliary neurotrophic factor53). The use of

photo-chemistry has also been developed to enable con-

trol over the temporal presentation of biological molecules

to encapsulated cells in situ. A recent study has demon-

strated the ability to utilize two different photo-initiated re-

actions, responsive to different wave-lengths, as above in

a tightly spatially controlled manner, to control the alter-

nate binding and release of an RGD peptide to allow single

cell-level control of adhesion events54, 55).

　A further recent development in the application of hydro-

gel technologies to bone repair, is the incorporation of inor-

ganic components into the hydrogel to provide nucleation

sites for mineralization56). Bone matrix itself incorporates

within a continuous collagenous organic phase a dispersed

calcium phosphate inorganic phase in the form of hydroxya-

patite (HA). As well as imparting mechanical strength, HA

provides an important mode of localizing osteogenic sig-

naling molecules in bone matrix. The incorporation of an

inorganic phase into hydrogel matrices is therefore likely

to constitute an important step towards the development

of a regenerative microenvironment for bone repair.

　The micro-environment that fosters stem cell mediated

tissue regeneration consists of the structural proteins of

the extra-cellular matrix, and the tightly regulated soluble

signals that perfuse it. The unique facility of these hydro-

gel strategies for self-assembly, cell delivery and retention

of the vital extracellular components provides considerable

potential for the bottom-up assembly and in vivo applica-

tion of such skeletal regenerative microenvironments.

Nanotopography for stem cell research
and regenerative medicine
　The importance of the physical environment including

topography57, 58), stiffness59) and chemistry60-62) in the regu-

lation of stem cell fate has become widely recognized.

However, the notion that topography can influence cell fate

in vitro is not a new concept. In the 1940s, Weiss63) re-

ported on the orientation of cultured cell axons. Later, Curtis

and Varde attributed alignment to a cellular response to

topographical cues64). Approaches using surface topogra-

phy, in particular nanoscale topography, to direct the dif-

ferentiation of adult skeletal stem cells and embryonic

stem cells are largely informed by the in vivo environment.

For example, 2-50nm mineral grain dimensions of woven

and lamellar bone have been reported at sites of bone

turnover65). Bone apatite and collagen composite provide

a rich topographical environment on the bone surface. In

addition, the extracellular matrix, rich in nanoscale features,

provides a scaffold for cell adherence, proliferation, stem

cell self-renewal and specific differentiation within the niche

environment66). Thus, current approaches to improve in vitro

expansion and differentiation of skeletal stem cells and to

improve success and longevity of orthopedic implants in

vivo are applying topographical strategies and materials67).

　Synthetic surface topography, for experimental use,

range from disordered, rough surfaces with millimeter di-

mensions to highly ordered, nanometer patterned surfaces.

In particular, biocompatible nanomaterials with topographi-

cal features of 1-100nm, in at least one dimension, are

produced by electron beam lithography (EBL) with 10nm

precision over cm2 areas68). Such nanotopographical sur-

faces may prove useful in overcoming some of the chal-

lenges faced by regenerative medicine, in particular in the

field of orthopedics. For example, osteoblasts were reported

to have enhanced adhesion to nanoscaled alumina, titania,

HA, titanium alloy (Ti6Al4V), and cobalt-chromium-molyb-

denum alloy compared to adhesion to micron scaled ce-

ramic materials69, 70). In contrast, and of significant therapeu-

tic benefit, adhesion of fibroblasts to these nanomaterials

was reduced, potentially overcoming fibrous encapsulation

of implants leading to poor osseointegration69).

1)Manipulation of adult skeletal stem cells using nano-

topography

   The use of nanotopography to influence skeletal stem

cell fate avoids the use of chemical differentiation inducing
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factors which are widely used in current differentiation pro-

tocols limiting translation to the clinic. Current research uti-

lizes nanoscale topographical surfaces of diverse geom-

etries to influence stem cell fate.

   In contrast to flat titanium surfaces, 80nm diameter

nanotubular surfaces induced higher levels of adhesion and

proliferation plus enhanced alkaline phosphatase activity

of rat marrow stromal cells71). Using human bone marrow

derived cells, we have previously reported that a random

arrangement 120nm diameter nanopits produced a high

cell density of adhered skeletal stem cells. In contrast, a

regular hexagonal arrangement of nanopits of the same

dimensions resulted in low cell density attributed to low

adhesion on this geometry57). Geometry can also be used

to manipulate skeletal stem cell fate. A near square ar-

rangement of nanopits (displaced by 50nm in x and y axis)

induced the osteogenic differentiation of unsorted human

bone marrow and STRO+ human skeletal stem cells in the

absence of soluble, chemical osteogenic factors57). Expres-

sion of osteopontin and osteocalcin was observed in cell

types cultured on near square nanotopographical surfaces.

In comparison, a planar flat control surface of the same

material failed to induce differentiation57) indicating that

nanotopography alone is sufficient to induce differentia-

tion.

   Adherence of adult skeletal stem cells was reported to

be enhanced on 30nm diameter titanium oxide nanotubes

in comparison to 100nm diameter nanotubes. In contrast,

70nm and 100nm diameter nanotubes induced the elon-

gation of cells promoting osteogenic differentiation72). How-

ever, this differential effect on directed differentiation may

also be attributed to cell density; whereby reduced seed-

ing densities promote osteogenic differentiation and high

seeding densities promote adipogenic differentiation60, 73).

   Culture on nanoislands in the presence of osteogenic

factors, was reported to enhance alkaline phosphatase ac-

tivity and mineralization of human mesenchymal stem cells

compared to a flat control when nanoislands were 12 and

21nm in height but this effect was not observed with 45nm

nanoislands74). Nevertheless, defining nanoscale thresh-

olds at which cells switch behaviour from that of prolifera-

tion to lineage specification and differentiation offers in-

sight for the development of these surfaces for clinical use.

   These studies demonstrate that nanoscale materials with

directed differentiation properties have regenerative medi-

cal applications in the in vitro differentiation of skeletal stem

cells to produce osteogenic cell types for research purposes

or for transplantation to assist in the repair or replacement

of lost or damaged bone. Furthermore, application of suit-

able nanotopographical patterns to implant surfaces may

enhance osseointegration where the implant is in contact

with the bone marrow skeletal stem cell population. In com-

parison to the near square arrangement of nanopits, a regu-

lar ordered arrangement of nanopits did not induce differ-

entiation in the absence of chemical osteogenic factors57).

In fact, this geometric pattern (Fig.2A) maintained the skel-

etal stem cell state over multiple passages58) a phenom-

enon not observed with passage on tissue culture plastic

Fig.2 A square arrangement of nanopits maintains STRO the skeletal stem cell state over

multiple passages
An SEM displaying a square arrangement of nanopits (A). The STRO+ populations of adult bone marrow

cells were seeded directly onto tissue culture plastic (TCP) (B) or nanotopographical substrates (Sq －
square arrangement of nanopits) (C). Cells were incubated on these surfaces in basal media (a-MEM plus

10% FCS and Penicillin-Streptomycin). Cell density was maintained below 80% confluence by passage

every 3-5 days. Cells were fixed with 4% paraformaldehyde the day after the fifth passage. Immunofluo-

rescent staining was conducted using STRO antibody hybridoma supernatant and Alexafluor 488 second-

ary antibody (green) and nuclei counterstained using DAPI (blue).
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or planar control surfaces. The expression of STRO-1 was

undetectable after 5 passages on tissue culture plastic

(Fig.2B), yet still detectable after passage 5 on the square

nanotopographical pattern (Fig.2C). These observations

indicate that the square arrangement of nanopits may be

suitable for in vitro expansion of skeletal stem cells for re-

search purposes or prior to directed differentiation for re-

generative therapies.

2)Nanotopographical cues for ESC differentiation

   While all stem cells have the properties of self-renewal

and potency, embryonic stem cells (ESCs) are truly pluri-

potent, providing, potentially, a useful resource for regen-

erative medical applications. Typical culture methods for

ESCs involve expansion on a mitotically inactivated feeder

layer of cells; traditionally murine embryonic fibroblasts

(MEFs)75) and more recently human derived feeder cells

such as fetal fibroblasts76), foreskin fibroblasts77, 78) or adult

bone marrow cells79). Thus ESC maintenance incorporates

a rich environment of soluble secreted factors and physi-

cal topographical cues provided by the feeder layer of cells.

In feeder-free culture systems, chemical cues are provided

by MEF conditioned media80) or the addition of basic fibro-

blast growth factor (bFGF)81, 82) in order to maintain ESC

self-renewal. However, tissue culture plastic surfaces must

have a surface coating of, for example, Matrigel80), a soluble

basement membrane extract of Engelbreth-Holm-Swarm

mouse sarcoma, in order to provide a topographical envi-

ronment for ESC self-renewal maintenance. The implemen-

tation of topography to maintain ESC self-renewal or to

direct differentiation may overcome a number of challenges

and risks associated with the use of animal derived sur-

face coatings and supplementary factors. Initially, ap-

proaches to manipulate ESCs with topography focused on

ridge and groove patterns, nanotubes or nanofibrils. ESCs

were reported to align and elongate in the direction of these

patterns, forming morphologically elongated cells with neu-

ral cell marker expression83-86). However, neural differen-

tiation is reported to be the default lineage of differentia-

tion in the absence of chemical cues87, 88).

   We hypothesized that the near square arrangement of

nanopits, which induced the differentiation of adult skel-

etal stem cells in the absence of osteogenic factors, could

direct the differentiation of human ESCs. Utilizing near

square nanotopography surfaces, hESCs seeded in a basal

medium lacking differentiation inducing factors (withdrawal

of FGF and conditioned medium) were observed to differ-

entiate towards a mesodermal lineage without detectable

expression of neural markers89, 90). Furthermore, markers

of skeletal stem cells (STRO1 and CD44) were detected in

cell types resulting from differentiation of hESCs on planar

or near square surfaces. Interestingly, following further in-

cubation, skeletal stem cell markers were reduced in cells

on near square surfaces indicating further differentiation.

Consistent with this, later markers of primitive human stro-

mal cell differentiation were detected with an enhancement

in CD63, ALCAM, collagen I and RUNX2 observed. Inter-

estingly, the adipogenic marker PPARγ was not detect-

able. Given the limited availability of adult skeletal stem

cells, directed differentiation of hESCs to skeletal stem cell

types for research purposes offers a renewable source of

cells for research purposes. In addition, nanotopography

directed hESC differentiation avoids the use of complex

chemicals in culture media which may interfere with down-

stream applications.

Bone regeneration: the clinical need
   Skeletal disorders requiring the regeneration or de novo

production of bone as a consequence of significant bone

loss present the orthopaedic surgeon with a considerable

reconstructive challenge. These include traumatic bone loss

from high velocity injuries, fracture non-union due to the

biological failure of normal bone healing, surgical excision

of bone for infection or tumour, joint arthrodesis and revi-

sion arthroplasty surgery. Autologous bone is widely con-

sidered the “gold standard” for restoring lost bone stock

because of its biological and mechanical properties, but it

is of limited supply and results in significant donor site

morbidity. Allograft is a good alternative, overcoming some

of these issues, but concerns over allograft immunogenic-

ity, risk of disease transmission and cost, have led to the

need for alternative grafts and the subsequent develop-

ment of scaffolds to act as bone graft substitutes. The

“Diamond Concept”outlines the principles advocated in

the development of a scaffold to optimize bone graft incor-

poration91). Naturally occurring biomaterials (demineralized

bone matrix, collagen, hydrogels)92-100), bioresorbable syn-

thetic polymers101-105), ceramics (HA, beta-tricalcium phos-

phate)106-113), silicon-based compounds (bioactive glasses,

glass ionomers)114-120) and trabecular metal (tantalum,

titanium)121-127) have all been developed for use as bone graft

substitutes. However, while their osteoconductive and me-

Review Article　New strategies in Skeletal Regeneration
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chanical properties auger well for their application, in iso-

lation bone graft substitutes often lack the necessary os-

teogenic and osteoinductive properties. The last decade

has seen a significant expansion in the application of tis-

sue engineering strategies to address this problem and

recent advancements in techniques have led to the suc-

cessful clinical translation of some of these strategies

(Table 1)128-143). The technique of impaction bone grafting

and its role in revision arthroplasty surgery will be explored

further to illustrate some of these concepts.

Impaction bone grafting: tissue engineer-
ing and regeneration
   The number of primary hip and knee arthroplasty proce-

dures performed in England and Wales between 2006 and

2011, increased from 120,000 to 163,000 per annum, while

the number of revision procedures, accounting for approxi-

mately 10% of cases, almost doubled to 15,000 per

annum144). In the United States alone, revision hip and knee

arthroplasty procedures are projected to increase by 137%

and 601% respectively between 2005 and 2030, with the

greatest requirement in those under the age of 65145, 146).

These figures are only set to rise given the demographics

of an aging population together with an increase in patient

functional expectation and demand. Revision arthroplasty

can be complicated by significant bone loss as a conse-

quence of osteolysis, stress shielding, implant removal, frac-

ture and/or infection. Impaction bone grafting (IBG) is a

recognized technique for restoring bone stock. First intro-

duced by Slooff in the Netherlands in the early 1980’s us-

ing autograft for acetabular reconstruction147), the technique

was later modified by the Exeter Hip Group in the United

Kingdom for femoral reconstruction148). The technique, us-

ing fresh frozen morcellised allograft, forms the basis of

modern day impaction grafting and remains the“gold

standard”in femoral and acetabular reconstruction with

extensive bone loss. IBG studies have demonstrated 99%

survivorship of the acetabular component and 89% survi-

vorship of the femoral component at 10 and 20 years re-

spectively148, 149), although these encouraging results have

Table 1 Summary of tissue engineering strategies successfully translated into clinical practice
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not been replicated outside the major centers150, 151). The

success of IBG is thought to be dependent on both me-

chanical and biological factors, with implant failure aris-

ing from a lack of bone graft incorporation, poor biological

fixation at the interface and an inability to resist shear forces.

We have shown that a graded particulate mix of morsellized

allograft can improve the shear strength properties of the

graft bed152) and that resistance to shear forces can be in-

creased by extensive washing of the graft prior to impac-

tion153). Furthermore, we have demonstrated the mechani-

cal properties, on the femoral and acetabular side, can be

enhanced by local fluid drainage and the application of a

vibrating tamp during the impaction process154-156), result-

ing in reduced peak loads and hoop strains transmitted to

the femoral cortex, and improved resistance to stem

subsidence154). These techniques enhance prosthetic sta-

bility (particularly around the proximal and middle femoral

regions) and, critically, reduce the potentially damaging

impaction loads and associated fracture risk.

   Morsellized impacted allograft provides a mechanical

scaffold with excellent osteoconductive properties but dis-

plays negligible osteoinductive potential in isolation. In

1985, Burwell reported the beneficial effects of adding bone

marrow to allograft on new bone formation and graft incor-

poration in an in vivo animal model157). We have demon-

strated the efficacy of human bone marrow stromal cells in

combination with IBG and allograft in both in vitro and in

vivo models, with proliferation and differentiation of the

stromal cells following impaction resulting in increased

interparticulate cohesion and shear strength, and confer-

ring a mechanical advantage over allograft alone158). Stud-

ies have also shown that the ability of a living composite of

human bone marrow stromal cell-allograft construct to re-

sist shear forces can be significantly enhanced by increas-

ing the initial seeding density, with a 2x105 cells/cm2 seed-

ing density giving a 16 per cent increase in shear strength

Fig.3 The effects of biologically activat-

ing allograft
Superior shear strength and interparticulate

cohesion of HA-nanocoated allograft biocom-

posite was observed compared to the un-

coated allograft control.

Fig.4 Successful graft incorporation into

the femoral head following IBG for

avascular necrosis
The central channel of impacted bone is seen

to have osseointegrated well on 3D recon-

structed views following μCT analysis (A, B)

and macroscopically (C) in a retrieval analy-

sis specimen two 2 years post-surgery.
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(p<0.001)159). Other studies have looked at the effects of

precoating allograft with type 1 collagen, fibronectin or nano-

HA particles, prior to human bone marrow stromal cell

(HBMSC) seeding and impaction159) (Fig.3). The addition

of vaterite (calcium carbonate) microspheres to the im-

pacted allograft/HBMSC construct has also been shown

to augment bone formation in an in vivo murine model160).

These tissue engineering strategies, in combination with

IBG, have been successfully translated to the clinical set-

ting in a series of patients with early stage avascular ne-

crosis of the femoral head. Allograft seeded with autolo-

gous HBMSCs from an iliac crest aspirate was impacted

into a canal drilled into the avascular segment of bone from

the lateral femoral cortex. Parallel in vitro analysis of these

impacted samples has confirmed that autologous HBMSCs

seeded onto the scaffold not only remain viable but exhibit

an osteogenic phenotype136). Interestingly, retrieval analy-

sis of the femoral head sample, from a patient that subse-

quently had a hip arthroplasty procedure as a consequence

of disease progression, demonstrated excellent graft in-

corporation into the hosts own bone161)(Fig.4).

   The concerns and limitations surrounding the use of au-

tograft and allograft have necessitated the development

and fabrication of alternative bone graft substitutes for use

in IBG. In vitro studies have demonstrated that poly (DL-

lactic acid) (PLA), when augmented with HBMSCs, can

support osteogenic differentiation and improve the me-

chanical properties of the scaffold, compared to PLA

alone159). These observations have been replicated in vivo

in a subcutaneous murine model, with an increased angio-

genic response in the living composite159). Further studies,

using an array of high and low molecular weight polymers

as allograft substitutes, have found that the milled, high

molecular weight forms of both PLA and poly (DL-lactic-

co-glycolic acid) (PLGA), possess the mechanical shear

strength and HBMSCs compatibility characteristics desir-

able for clinical use163). The production of a porous version

of these polymers using a supercritical CO2 foaming tech-

nique, with pore sizes between 50 and 200μm was found

to maintain the mechanical strength of the polymer/HBMSC

construct by improving resistance to shear forces and en-

hancing cellular compatibility and cohesion between the

polymer particles164). The addition of HA particles to the

porous matrix has been found to further enhance the

osteoinductivity of the scaffold both in vitro and in a murine

in vivo model (Fig.5). IBG provides a useful strategy for

replacing bone stock in contained defects, however such

an approach is limited if the bone loss is too extensive or

the defect is uncontained. To address such conditions,

porous trabecular metal has been used, and we have shown

in vitro the ability of tantalum trabecular metal to support

the growth and osteogenic differentiation of HBMSCs165).

   As arthroplasty becomes increasingly more common in

younger people and as life expectancy increases, the num-

ber of people with substantial bone loss requiring surgery

will inevitably increase. The challenge will be to develop

biologically active constructs, with optimal mechanical prop-

erties, capable of promoting osseointegration. Despite on-

going research efforts and recent clinical success of tissue

engineering strategies, the widespread uptake of this tech-

nology has yet to be fully realized.

Conclusions
   Skeletal tissue regeneration using skeletal stem cells of-

fers the prospect of new alternative therapies for bone and

cartilage regeneration. Critical in this process of tissue re-

pair is the cell source and bone marrow derived skeletal

stem cells offer an exciting possibility in attaining clinical

efficacy. Other approaches using human embryonic and

induced pluripotent stem cells provide a clear challenge to

Fig.5 Cell survival and differentiation on PLA-HA +

HBMSCs scaffold
A milled mix of PLA-HA composite were seeded with cells

at 5x105 cells/ml and incubated in osteogenic media (a-

MEM, 10% FCS, Penicillin-Streptomycin, ascorbate-2-

phosphate and dexamethasone) (A) live-dead stain con-

firming cell survival on the scaffold at 2/52 incubation (B)

COL 1 (red) against DAPI nuclear (green) stains illustrat-

ing osteogenic activity. Scale bars = 100μm.
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generate reproducible homogenous skeletal populations

and yet offer exciting vistas for future skeletal reparative

approaches. Crucial in the development of a cell based

strategy together with enhanced understanding of skeletal

stem and progenitor biology, cell fate and function are new

approaches that provide cues for differentiation and func-

tion and appropriate niches for tissue development (including

analysis of the inflammatory milieu). Nanotopography tem-

plates provide a powerful tool for skeletal stem cell modu-

lation of function and stemness whilst biomimetic environ-

ments that provide stem cell niche and angiogenic cues

will undoubtedly inform and enhance skeletal tissue repair.

These are exciting times in bone tissue regeneration and

the challenge will be to harness developmental biology,

biomaterial science, bioengineering, translational biomedi-

cine and stem cell science to deliver simple, safe and re-

producible skeletal cell based strategies for bone augmen-

tation for an ageing population.
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