Mini Review

Effect of antimicrobial cathelicidin peptides on the endothelial cell apoptosis

Kaori Suzuki* and Isao Nagaoka

Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan

Endothelial cells function as a barrier between the intravascular compartment and extravascular tissues. At the site of inflammation, endothelial cells are impaired through the apoptosis, and vascular integrity is disrupted. Thus, apoptosis of endothelial cells triggers the microcirculatory disorder and organ dysfunction, and its attenuation is considered to be one of the therapeutic strategies for inflammatory diseases, including sepsis. Cathelicidins are the family of antimicrobial peptides found in several mammalian species. They are constitutively expressed by neutrophils and epithelial cells in normal condition, and abundantly induced upon infectious or inflammatory stimuli. In addition to the broad spectrum of bactericidal activities, cathelicidins diversely affect biological functions such as chemotaxis and cytokine production, thereby modulating inflammatory or immune responses. Moreover, some cathelicidins exhibit angiogenic activity against ischemic endothelial cells, suggesting their therapeutic role for vascular damage. Consistently, two cathelicidins (porcine PR-39 and human LL-37) are reported to inhibit the apoptosis of endothelial cells. In this review, we introduce the effects of cathelicidins on the apoptosis of endothelial cells.

* Correspondence should be addressed to: Kaori Suzuki, Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Phone: +81-3-5802-1033, Fax: +81-3-3813-3157, E-mail: kasuzuki@juntendo.ac.jp

Key words antimicrobial peptide, cathelicidin, endothelial cell apoptosis, LL-37, organ dysfunction

Introduction

Endothelial cells function as a barrier between the intravascular compartment and extravascular tissues, and regulate the flow of nutrient substances, diverse biologically active molecules and the blood cells. Damage of the endothelial barrier causes efluxation of blood cells, blood flow obstruction and eventually organ dysfunction. Mounting evidence strongly suggests that at the site of inflammation, endothelial cells are impaired through the apoptosis and vascular integrity is disrupted. Various stimuli such as bacterial substances, hypoxia and inflammatory mediators induce the apoptosis of endothelial cell during inflammation.

Cathelicidins are family of antimicrobial peptides found in several mammalian species. They consist of a highly conserved N-terminal domain and a variable C-terminal short peptide (12-100 amino acids), which is proteolytically cleaved and released by epithelial and myeloid cells (Fig.1). The C-terminal peptide exerts broad spectrum of antibacterial activity. The most...
Antiapoptotic effect of PR-39 on hypoxic endothelial cells

Although several studies revealed the angiogenic role of cathelicidins12,13, the effect of those peptides on the apoptosis of endothelial cells has been barely reported. PR-39 is the only cathelicidin that was demonstrated to have a direct antiapoptotic effect to endothelial cells15. In brief, Wu et al. revealed that PR-39 is induced by hypoxia in bovine aortic endothelial cells and inhibits the hypoxia-induced apoptosis of the cells. They speculate that PR-39 inhibits the apoptosis by increasing the level of inhibitor of apoptosis protein-2 (IAP-2) through the augmentation of its promoter activity and mRNA stability, thereby suppressing the caspase activity in the endothelial cells15. This capacity of PR-39 is provided by the potential that it rapidly penetrates the cell membrane and localized to the cytoplasm in the endothelial cells16. PR-39 also has an angiogenic activity against endothelial cells12. These antiapoptotic and angiogenic activities of PR-39 may synergistically contribute to maintain vascular integrity and prevent blood flow from inflamed damage.

LPS-induced endothelial cell apoptosis in sepsis

Sepsis is a systemic inflammation resulting from harmful host response to bacterial infections17. Lipopolysaccharide (LPS), an outer membrane component of the Gram-negative bacteria, functions as a major virulence factor for the pathogenesis17,18. Binding of LPS to the LPS receptor complex consisting of CD14, toll-like receptor 4 (TLR4) and adaptor molecule MD-2 induces diverse cellular responses to various host cells by activating downstream intracellular signaling of TLR419. Although endothelial cells express CD14 and TLR4 much less compared to monocytes or macrophages20, it is demonstrated that LPS binds to endothelial cells through these molecules and upregulates adhesion molecules21 and coagulation factors22,23, and eventually induces apoptosis24. In severe sepsis or septic shock, endothelial cell apoptosis is considered to be crucial for the exacerbation, since endothelial cell apoptosis induced in the susceptible organs such as lung and liver triggers microcirculatory disorder and organ dysfunction25,26. This was confirmed by the experimental evidence that administration of a caspase inhibitor or
vascular endothelial growth factor (VEGF) inhibits the LPS-induced endothelial cell apoptosis and improves the survival rates of murine models with acute lung or liver injury.\(^{27,28}\)

Inhibitory effect of LL-37 on the LPS-induced endothelial cell apoptosis in culture

Since the endothelial cell apoptosis is a key event triggering organ dysfunction during sepsis\(^{29}\), its attenuation is considered to be one of the therapeutic strategies\(^{35}\). Human cathelicidin LL-37 was previously shown to induce angiogenesis in the models of physiologic and pathologic angiogenesis\(^{33}\), suggesting its protective effect on the apoptosis of endothelial cells.

We evaluated the effect of LL-37 on the LPS-induced apoptosis of endothelial cells in vitro. Incubation of human lung-derived microvascular endothelial cells (HMVEC-Ls) with LPS (100 ng/ml) and cycloheximide (CHX, 10 \(\mu\)g/ml) resulted increased apoptotic cells (about 40% of the cells), as previously reported\(^{46}\). Notably, LL-37 (1 \(\mu\)g/ml) significantly reduced the LPS/CHX-induced apoptosis assessed by Annexin V/PI staining (Fig.2A), TUNEL staining and caspase activity.

We further clarified the mechanism for the suppressive action of LL-37 on the LPS/CHX-induced apoptosis by examining the effect of LL-37 on the LPS-binding to HMVEC-Ls. The cells were incubated with fluorescence-labeled LPS in the absence or presence of LL-37, and cell-associated LPS was analyzed. The LPS-binding was obviously inhibited by LL-37 (0.1, 1 \(\mu\)g/ml) (Fig.2B), suggesting that LL-37 suppresses the LPS/CHX-induced apoptosis of HMVEC-Ls by inhibiting LPS-binding to the cells. We next examined the effects of neutralizing antibodies for LPS receptors on the LPS/CHX-induced apoptosis and the LPS-binding. Anti-CD14\(^{40}\) and anti-TLR4\(^{11}\) mAbs significantly reduced the LPS/CHX-induced apoptosis as well as the LPS-binding. These observations suggest that LL-37 suppresses the LPS/CHX-induced apoptosis possibly by inhibiting the binding of LPS to CD14/TLR4, thereby preventing the activation of downstream apoptotic signaling in HMVEC-Ls.

Previous studies indicated that LPS-induced apoptosis is mediated by the activation of c-Jun N-terminal kinase (JNK) in dermal microvascular endothelial cells\(^{39}\). To clarify the involvement of JNK in the LPS/CHX-induced apoptotic signaling in HMVEC-Ls, we examined the effect of a JNK inhibitor
Effect of LL-37 on the endothelial cell apoptosis in D-GalN-sensitized endotoxin shock mice

We further evaluated the effect of LL-37 on the LPS-induced endothelial cell apoptosis in vivo using a D-galactosamine (GalN)-sensitized endotoxin shock model\(^2\). Previous our study revealed that survival rate considerably increased from 10% in LPS/D-GalN mice to 80% in LPS/D-GalN+LL-37 mice\(^3\), indicating that the administration of LL-37 protects mice from lethal endotoxin shock. Mice were intraperitoneally injected with LPS (100 ng) and D-GalN (18 mg)\(^3\) without or with LL-37 (50 \(\mu\)g). We evaluated the apoptosis of hepatic endothelial cells by staining liver section with TUNEL reagent and anti-CD31 antibody. LPS/D-GalN-injection induced apoptosis (TUNEL\(^+\) cells) in a large number of CD31\(^+\) cells in the liver, and the most of apoptotic cells were hepatocytes\(^5\). In addition, we found that TUNEL\(^+\) apoptotic cells were detected among CD31\(^+\) endothelial cells lining blood vessels. These observations indicate that apoptosis is induced in not only hepatocytes but also endothelial cells in the liver of this model. Notably, LL-37 administration drastically reduced the number of TUNEL\(^+\) apoptotic cells among CD31\(^+\) endothelial cells (Fig.4) as well as CD31\(^+\) cells (mostly hepatocytes) in the liver of LPS/D-GalN mice. Thus, it is demonstrated that LL-37 is able to suppress the apoptosis of both hepatic endothelial cells and hepatocytes in vivo in this endotoxin shock.
model. Since the cause of death is due to the liver failure in this model12, our observations strongly suggest that LL-37 protects mice from lethal endotoxin shock by suppressing the apoptosis of hepatocytes and hepatic endothelial cells.

Apoptosis was induced in a large number of hepatocytes and endothelial cells in the liver of LPS/D-GalN mice, and LL-37 administration markedly reduced the apoptosis of both cells. It is interesting to know whether the suppressive effect of LL-37 on the endothelial cell apoptosis contributes to the protection from hepatocyte apoptosis (liver failure) in LPS/D-GalN mice. Importantly, it has been reported that endothelial injury precedes parenchymal cell damage in LPS-injected mice, and loss of vascular integrity plays a role in tissue damage and multiple-organ dysfunction46. Furthermore, the suppression of hepatic endothelial cell apoptosis by the administration of recombinant VEGF protected LPS/D-GalN mice from the destruction of sinusoidal hepatic architecture and hepatic injury27. Consequently, the maintenance of vascular integrity is crucial for the protection of parenchymal cells during the progression of organ dysfunction in sepsis. Of note, present our study revealed that LL-37 suppresses the apoptosis of hepatic endothelial cells as well as hepatocytes. In addition, we found that LPS was predominantly bound to the surface of blood vessels in the liver of LPS/D-GalN mice, and the binding was suppressed by the administration of LL-37. Together these observations likely suggest that the suppression of hepatic endothelial cell apoptosis by LL-37 not only prevents vascular damage but also attenuates hepatocyte apoptosis, thereby protecting mice from lethal liver failure.

Conclusion

Endothelial cell apoptosis is one of the common events caused by various kinds of inflammatory stimuli. In this review, we introduced the effects of antimicrobial cathelicidins on the inflammation-induced apoptosis of endothelial cells.

PR-39 enters the cells and inhibits the hypoxia-induced apoptosis of endothelial cells by increasing the level of IAP-2, thereby suppressing the caspase activity15. Similarly, PR-39 exhibits angiogenic activity12, in which the penetrated PR-39 increases several angiogenesis-related genes including VEGF and VEGF receptor 1 by inhibiting the degradation of hypoxia-inducible factor-1α (HIF-1α). As the common mechanism for these effects, it is speculated that PR-39 alters the gene expression of endothelial cells by penetrating into the cells and binding to the signaling molecules in the cytoplasmic component46. Such function of PR-39 likely depends on its conformation. Although PR-39 and LL-37 are cationic and play angiogenic role, their structures (proline-rich PR-39 vs. α-helical LL-37) and angiogenic mechanism are different: LL-37 increases the proliferation and formation of vessel-like structure of endothelial cells by interacting with the cell surface receptor, formyl peptide receptor-like 1 (FPRL1)13. Although LL-37 was reported not to affect the apoptosis of endothelial cells in healthy condition13, LL-37 possibly regulates the apoptosis of endothelial cells under pathogenic condition.

Recently, we have revealed that LL-37 suppresses the LPS-induced endothelial cell apoptosis via the inhibition of LPS-binding with the cells27. This effect is exerted by the potent LPS-neutralizing activity of LL-37, but not the direct interaction with endothelial cells. Such LPS-neutralizing activity is specific for α-helical cathelicidins48. In this context, we previously demonstrated that the LL-37 and CAP11 potently suppresses the production and release of septic mediators from LPS-stimulated macrophages33,34. Thus, LL-37 could be expected as a therapeutic agent for Gram-negative bacterial sepsis/endotoxin shock, because LL-37 could attenuate the progression of LPS-induced multiple cellular responses by its potent LPS-neutralizing activity.

Acknowledgements

Work performed in the authors’ laboratory was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science; a Grant-in-Aid for 21st Century COE Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan; Seikagaku Biobusiness Corporation, Japan; Eisai Co., Ltd., Japan; and Dainippon Sumitomo Pharma Co., Ltd., Japan.

References

