Role of sphingosine 1-phosphate signaling for the pathogenesis of autoimmune diseases

Tsuyoshi Iwasaki¹,*, Sachi Tsunemi², Sachie Kitano², Chieri Kanda², Masahiro Sekiguchi², Masayasu Kitano² and Hajime Sano²

¹Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
²Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan

Sphingosine 1-phosphate (S1P) acts as an extracellular mediator by binding to G protein-coupled receptors, regulating cell proliferation, angiogenesis and inflammation. FTY720 (FTY) is a high-affinity agonist for S1P receptors, inducing internalization of receptors, rendering the cells unresponsive to S1P. Here, we review the role of S1P signaling for the pathogenesis of autoimmune diseases and the therapeutic effects of FTY on autoimmune diseases.

*Correspondence should be addressed to:
Tsuyoshi Iwasaki, Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, 650-8530, Japan, Phone: 81-78-304-3138, Fax: 81-78-304-2838, E-mail: tsuyo-i@huhs.ac.jp

Key words:
sphingosine 1-phosphate, FTY720, rheumatoid arthritis, systemic lupus erythematosus, Sjogren’s syndrome
Introduction

Sphingosine 1-phosphate (S1P) is one of the cell-derived lysophospholipid growth factors that signal diverse cellular functions. S1P is generated by metabolism of sphingomyelin with S1P levels being tightly regulated by series of enzymes including sphingosine kinase (SK) and S1P phosphatase. S1P acts as an extracellular mediator by binding to G protein-coupled receptors (GPCRs). To date, five S1P receptors, namely S1P1, S1P2, S1P3, S1P4, and S1P5, have been identified as high-affinity receptors. In the immune system, S1P interacts with platelets and interacts with endothelial cells through S1P1. In the immune system, S1P interacts with naive and memory T cells through S1P1, regulating T cell development and tissue-homing patterns. FTY720 (FTY) is a high-affinity agonist for S1P receptors, and after phosphorylation by SK, FTY720P (FTY-P) activates S1P1, S1P4 and S1P5 receptors with an EC50 of approximately 1 nM, is a partial agonist on S1P3 receptors and is inactive on S1P2. FTY induces internalization of the receptor, rendering the cells unresponsive to S1P. Its immunomodulatory effects are primarily exerted by sequestration of lymphocytes within the thymus and secondary lymphoid organs, thereby denying them the ability to recirculate to peripheral sites of inflammation.

The sphingolipid metabolites ceramide, sphingosine, and S1P have recently emerged as a new class of lipid messengers that regulate cell proliferation, differentiation, and survival in opposite directions.

Fig. 1.

Regulatory role of S1P for cell proliferation and differentiation. S1P is generated by metabolism of sphingomyelin with S1P levels being tightly regulated by series of enzymes including sphingosine kinase (SK) and S1P phosphatase. S1P acts as an extracellular mediator by binding to G protein-coupled receptors (GPCRs) such as S1P1, S1P2, S1P3, S1P4, and S1P5.

Role of S1P signaling for the pathogenesis of autoimmune diseases

The sphingolipid metabolites ceramide, sphingosine, and S1P have recently emerged as a new class of lipid messengers that regulate cell proliferation, differentiation, and survival in opposite directions. The balance of these three lipid-signaling molecules is critically regulated by SK, which converts sphingosine to S1P by phosphorylating sphingosine. Recent studies have demonstrated that the agonist-inducible SK, SK1, is up-regulated in azoxymethane-induced colon cancer cells and in B cells resistant to Fas-mediated apoptosis from patients with...
rheumatoid arthritis (RA)13, 14. The mechanisms by which SK1 promotes carcinogenesis and resistance to Fas-mediated apoptosis probably depend on its ability to phosphorylate sphingosine to produce S1P. We have demonstrated that S1P signaling is up-regulated in patients with RA and primary Sjogren’s syndrome (pSS)15, 16.

Role of S1P signaling for the pathogenesis of RA

We examined S1P\textsubscript{1} and SK1 protein expressions in RA synoviocytes. Both S1P\textsubscript{1} and SK1 were more strongly expressed in synovial lining cells, vascular endothelial cells, and inflammatory mononuclear cells of RA synovium compared with osteoarthritis synovium. S1P increased the proliferation, COX-2 expression and PGE\textsubscript{2} production of RA synoviocytes. These findings suggest that S1P signaling via S1P receptors plays an important role in cell proliferation and inflammatory cytokine-induced COX-2 expression and PGE\textsubscript{2} production by RA synoviocytes15.

Role of S1P signaling for the pathogenesis of pSS

To study the role of S1P-S1P\textsubscript{1} interactions in the pathogenesis of pSS, we examined the expression and localization of SK1 and S1P\textsubscript{1} in labial salivary glands (LSG) from patients with pSS by immunohistochemistry. The immunoreactivity of both SK1 and S1P\textsubscript{1} exhibited a similar cellular distribution, as both SK1 and S1P\textsubscript{1} were expressed within cytoplasm of inflammatory mononuclear cells, vascular endothelial cells, and salivary gland epithelial cells in LSG biopsy specimens. We next extended this approach to various stages of sialoadenitis and examined the extent and intensity of both SK1 and S1P\textsubscript{1} immunostaining. Although SK1 staining intensity was not different between grade 1 and grade 4 LSG biopsy specimens, S1P\textsubscript{1} staining in inflammatory mononuclear cells was significantly more extensive in the grade 4 LSG biopsy specimens than in the grade 1 LSG biopsy specimens (Fig. 3). These results indicate that S1P-S1P\textsubscript{1} interactions occur in salivary glands from patients with pSS. We observed that IFN-γ significantly increased Fas mRNA expression in a salivary gland ductal epithelial cell line, NS-SV-DC. Fas mRNA expression was also significantly increased by S1P (0.1–0.5 µM). Furthermore, S1P enhanced IFN-γ-induced Fas mRNA expression in NS-SV-DC cells (Fig. 4). These results indicate that both S1P and IFN-γ secreted by infiltrating CD4+ T cells increase...
Fas expression on salivary gland epithelial cells. We also examined caspase-3 expression in NS-SV-DC cultured with IFN-γ or S1P. Both IFN-γ and S1P (0.1–0.5 µM) significantly increased caspase-3 expression in NS-SV-DC in the presence of anti-Fas mAb (Fig. 4) \(^{(16)}\).

Fig. 3.

S1P\(_1\) and SK1 expression in salivary glands by pSS patients. SK1 staining intensity was not different between grade 1 and grade 4 LSG biopsy specimens, but S1P\(_1\) staining in inflammatory mononuclear cells was significantly more extensive in the grade 4 LSG biopsy specimens than in the grade 1 LSG biopsy specimens. Original magnification, x400, with insets, x1000. EP, Epithelial cell; MN, mononuclear cell.

Fig. 4.

S1P induces apoptosis of salivary gland epithelial cells. A. NS-SV-DC cells (1 x 10\(^6\)) were treated with 0.01–0.5 µM S1P without (−) or with (+) IFN-γ (0.2 µg/ml) for 6 h, and semiquantitative RT-PCR for the expression of Fas mRNA in NS-SV-DC cells was performed. Fas mRNA expression levels were determined by normalizing expression with respect to GAPDH mRNA expression levels. B. NS-SV-DC cells (1 x 10\(^6\)) were cultured in the presence (+) or absence (−) of S1P (0.01–0.5 µM) or IFN-γ (0.2 µg/ml). After 72 h of culture, anti-Fas mAb (100 ng/ml) was added and caspase-3 activity of the cell lysates was analyzed. Percentage increase of anti-Fas mAb-induced caspase-3 activity was calculated.
Experimental trial of FTY for the treatment of autoimmune diseases

FTY is a synthetic compound produced by modification of a metabolite from Isaria sinclairii, a kind of vegetative wasp. FTY is phosphorylated in vivo by SK2 to FTY-P, which acts as potent S1P receptors (S1PRs) agonist. These receptors are critically involved in cell survival, cytoskeletal rearrangements, cell motility, and cell migration. FTY-P binds to four types of S1PRs (S1P1, S1P3, S1P4, and S1P5) except for S1P2 and acts as a high affinity agonist at these receptors. FTY-P acts as a potent agonist at S1P1, internalizes S1P1 on lymphocytes, and inhibits the migration of lymphocytes toward S1P. This immunomodulatory effects are primarily exerted by sequestration of lymphocytes within the thymus and secondary lymphoid organs, thereby denying them the ability to recirculate to peripheral sites of inflammation. FTY has been shown to be a useful agent for the prevention of transplant rejection and autoimmune diseases such as multiple sclerosis (MS) using animal models. There are several reports demonstrating that FTY is effective for the treatment of RA using collagen or adjuvant-induced arthritis models. We have observed that FTY is effective for the treatment of systemic lupus erythematosus (SLE) or RA using lupus model of chronic graft-versus-host diseases (GVHD) mice or RA model of SKG mice, respectively.

Fig. 5.

Effect of FTY on lupus model of chronic GVHD mice. Chronic GVHD was induced by injection of DBA/2 spleen cells (5 x 10^7) into (B6 x DBA/2) F1 mice. FTY treatment of chronic GVHD mice reduced the spleen size at 2 weeks (A) and significantly inhibited proteinuria at 8 weeks after GVHD induction (B). FTY treatment also inhibited IL-4 mRNA expressions in the spleen at 2 weeks after GVHD induction (C).
Therapeutic effect of FTY on SLE model mice

Therapeutic effects of FTY has been studied using SLE model of lpr mice. FTY-treated lpr mice had significantly prolonged live and the increased proportion of CD3⁺ B220⁺ and CD4⁺ CD8⁻ cells in the thymus. Apoptotic cells were detected in all the lymphoid organs. Pathogenic T cells that recognize self-antigens and drive B cell hyperactivity play a central role in the pathogenesis of both human and murine lupus. Chronic GVHD, which is induced in (C57BL/6 × DBA/2) F1 (BDF1) mice by injection of DBA/2 spleen cells, is associated with the activation of donor CD4⁺ T cells that recognize host major histocompatibility complex antigens and drive host B cell hyperactivity. Mice of this parent-into-F1 chronic GVHD model show increased T helper (Th) 2 immune responses, and exhibit autoimmune disorders that resemble human SLE, primary biliary chirrhosis, and pSS, which are characterized by lymphocyte infiltration into organs such as the kidneys, liver and salivary glands. We observed that FTY treatment of chronic GVHD mice significantly inhibited proteinuria and histopathological changes in the kidneys, liver, and salivary glands. FTY treatment also inhibited Th2 cytokine mRNA expressions in the spleen and kidneys (Fig. 5).

![Fig. 6.](image)

FTY administration inhibited joint swelling (A). X-ray examination of the ankle joints of untreated SKG mice at 60 days following β-glucan injection revealed erosion of the cartilage and subchondral bone while these changes were inhibited in FTY-treated SKG mice (B). Histopathology of swollen joints in the untreated SKG mice revealed vigorous proliferation of synovial cells and infiltration by mononuclear cells and neutrophils of the synovial tissues. In contrast, these pathological changes were significantly inhibited in FTY-treated SKG mice. Original magnification x40. Inserts show higher magnifications of the indicated part of the synovium (C).
Therapeutic effect of FTY on RA model of SKG mice

We observed that FTY administration inhibited joint swelling. Histopathology of swollen joints in the untreated SKG mice revealed vigorous proliferation of synovial cells and infiltration by mononuclear cells and neutrophils of the synovial tissues as has been observed in human RA. In contrast, these pathological changes were significantly inhibited in FTY-treated SKG mice. X-ray examination of the ankle joints of untreated SKG mice at 60 days following β-glucan injection revealed erosion of the cartilage and subchondral bone while these changes were inhibited in FTY-treated SKG mice (Fig. 6) 26).

Clinical trial of FTY treatment

The first Phase II, multicenter, open-label, dose-finding study compared FTY (0.25, 0.5, 1.0, or 2.5 mg) with mycophenolate mofetil (MMF), in combination with cyclosporine and corticosteroids has been reported. FTY at 2.5 mg was found to be as effective as MMF in combination with cyclosporine for the prevention of acute rejection after renal transplantation 35). Next multicenter, double-blind, Phase II, randomized study evaluated the safety and efficacy of 5 mg FTY vs. 2.5 mg FTY vs. MMF in de novo renal transplant patients receiving full dose cyclophosphamide and prednisone. Although FTY provided adequate protection from acute rejection the safety profile was less favorable for adverse events such as bradycardia and respiratory disorders than current standard immunosuppression in de novo renal transplant patients 36).

FTY was highly effective in Phase II clinical trials with relapsing MS 37, 38). FTY at an oral dose of 1.25 mg or 5.0 mg, or placebo is administered daily for 6 months to 281 patients and total of 255 patients has completed the clinical study. The median total number of gadolinium-enhanced lesions on magnetic resonance imaging (MRI) was lower in patients receiving 1.25 mg (1 lesion, P<0.001) and 5.0 mg (3 lesions, P=0.006) of FTY than those receiving placebo (5 lesions). Recently, one year Phase III TRANSFORMS study of FTY in relapsing remitting MS has been reported 39). In this study, FTY at oral dose of 0.5mg and 1.25mg showed a superior efficacy compared with a standard treatment of interferon-β.

Another 2 years placebo-controlled Phase III studies (FREEDOMS and FREEDOMS II) to assess the impact of FTY in reducing the frequency of relapses and slowing the progression of disability have been reported 40). Furthermore, Phase III study (INFOMS) of FTY is also ongoing for the treatment of patients with primary progressive MS.

Conclusions

In this paper, we briefly reviewed clinical and experimental reports of S1P for the pathogenesis of autoimmune diseases including our experimental results. We also reviewed clinical and experimental reports of FTY for the treatment of autoimmune diseases. Many preclinical and clinical data supported that FTY has efficacy to many diseases such as acute rejection after renal transplantation and MS. The regulation of S1P/S1P1 receptors signaling using FTY may become a new approach for the therapy not only of autoimmune diseases but also of many other diseases.

References

7) Gräler MH, Goetzl EJ: The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate

